Skip to main content

Heterogeneous CPU+iGPU Processing for Efficient Epistasis Detection

  • Conference paper
  • First Online:
Euro-Par 2020: Parallel Processing (Euro-Par 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12247))

Included in the following conference series:

Abstract

Epistasis detection represents a fundamental problem in bio-medicine to understand the reasons for occurrence of complex phenotypic traits (diseases) across a population of individuals. Exhaustively examining all possible interactions of multiple Single-Nucleotide Polymorphisms provides the most reliable way to identify accurate solutions, but it is both computationally and memory intensive task. To tackle this challenge, this work proposes a modular and self-adaptive framework for high-performance and energy-efficient epistasis analysis on modern tightly-coupled heterogeneous platforms composed of multi-core CPUs and integrated GPUs. To fully exploit the capabilities of these systems, the proposed framework incorporates both task- and data-parallel approaches specifically tailored to enhance single and multi-objective epistasis detection on each device architecture, along with allowing efficient collaborative execution across all devices. The experimental results show the ability of the proposed framework to handle the heterogeneity of an Intel CPU+iGPU system, achieving performance and energy-efficiency gains of up to 5\(\times \) and 6\(\times \) in different parallel execution scenarios.

This work was supported by Intel Corporation, the FCT (Fundação para a Ciência e a Tecnologia, Portugal) and the ERDF (European Regional Development Fund, EU) through the projects UIDB/50021/2020 and LISBOA-01-0145-FEDER-031901 (PTDC/CCI-COM/31901/2017, HiPErBio). Sergio Santander-Jiménez and Diogo Marques are supported by FCT fellowships under Grants SFRH/BPD/119220/2016 and SFRH/BD/136053/2018.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Given two solutions \(s_1\) and \(s_2\) and n objective functions \(\mathbf {f}(s)=[f_1(s),...,f_n(s)]\), \(s_1\) dominates \(s_2\) iff 1) \(\forall \) i \(\in \) [1, 2, ..., n], \(f_i(s_1)\) is not worse than \(f_i(s_2)\) and 2) \(\exists \) i \(\in \) [1, 2, ..., n] such that \(f_i(s_1)\) is better than \(f_i(s_2)\). Those solutions that are not dominated by any other candidate compose the Pareto-optimal set. The representation of this set in the objective space is commonly designated as Pareto front.

References

  1. Che, K., et al.: Epistasis detection using a permutation-based gradient boosting machine. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1247–1252. IEEE (2016)

    Google Scholar 

  2. Dinu, I., et al.: SNP-SNP interactions discovered by logic regression explain Crohn’s disease genetics. PloS One 7(10), e43035 (2012)

    Article  Google Scholar 

  3. Fan, R., et al.: Entropy-based information gain approaches to detect and to characterize gene-gene and gene-environment interactions/correlations of complex diseases. Genet. Epidemiol. 35(7), 706–721 (2011)

    Article  Google Scholar 

  4. Gallego-Sánchez, D., et al.: Parallel multi-objective optimization for high-order epistasis detection. In: Ibrahim, S., Choo, K.K.R., Yan, Z., Pedrycz, W. (eds.) ICA3PP 2017. LNCS, vol. 10393, pp. 523–532. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65482-9_38

    Chapter  Google Scholar 

  5. Gonçalves, F., et al.: Parallel evolutionary computation for multiobjective gene interaction analysis. J. Comput. Sci. 40(101068), 1–15 (2020)

    MathSciNet  Google Scholar 

  6. González-Domínguez, J., Schmidt, B.: GPU-accelerated exhaustive search for third-order epistatic interactions in case-control studies. J. Comput. Sci. 8, 93–100 (2015)

    Article  Google Scholar 

  7. Intel Corporation: The Compute Architecture of Intel® Processor Graphics Gen9 (2015)

    Google Scholar 

  8. Jing, P.J., Shen, H.B.: MACOED: a multi-objective ant colony optimization algorithm for SNP epistasis detection in genome-wide association studies. Bioinformatics 31(5), 634–641 (2015)

    Article  Google Scholar 

  9. Joubert, W., et al.: Attacking the opioid epidemic: determining the epistatic and pleiotropic genetic architectures for chronic pain and opioid addiction. In: SC18: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–57. IEEE (2018)

    Google Scholar 

  10. Kässens, J.C., et al.: High-speed exhaustive 3-locus interaction epistasis analysis on FPGAs. J. Comput. Sci. 9, 131–136 (2015)

    Article  Google Scholar 

  11. Li, X., et al.: Nature-inspired multiobjective epistasis elucidation from genome-wide association studies. IEEE/ACM T. Comput. Biol. (2018). https://doi.org/10.1109/TCBB.2018.2849759

    Article  Google Scholar 

  12. Ritchie, M.D.: Finding the epistasis needles in the genome-wide haystack. In: Moore, Jason H., Williams, Scott M. (eds.) Epistasis. MMB, vol. 1253, pp. 19–33. Springer, New York (2015). https://doi.org/10.1007/978-1-4939-2155-3_2

  13. Schüpbach, T., et al.: FastEpistasis: a high performance computing solution for quantitative trait epistasis. Bioinformatics 26(11), 1468–1469 (2010)

    Article  Google Scholar 

  14. Sun, J., et al.: Hidden risk genes with high-order intragenic epistasis in alzheimer’s disease. J. Alzheimer’s Dis. 41(4), 1039–1056 (2014)

    Article  Google Scholar 

  15. Visscher, P.M., et al.: 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101(1), 5–22 (2017)

    Article  Google Scholar 

  16. Wan, X., et al.: Boost: a fast approach to detecting gene-gene interactions in genome-wide case-control studies. Am. J. Hum. Genet. 87(3), 325–340 (2010)

    Article  Google Scholar 

  17. Weeks, N.T., et al.: High-performance epistasis detection in quantitative trait gwas. Int. J. High Perform. Comput. Appl. 32(3), 321–336 (2018)

    Article  Google Scholar 

  18. Yang, C., et al.: SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies. Bioinformatics 25(4), 504–511 (2009)

    Article  Google Scholar 

  19. Yang, J.K., et al.: Interactions among related genes of renin-angiotensin system associated with type 2 diabetes. Diab. Care 33(10), 2271–2273 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Campos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Campos, R., Marques, D., Santander-Jiménez, S., Sousa, L., Ilic, A. (2020). Heterogeneous CPU+iGPU Processing for Efficient Epistasis Detection. In: Malawski, M., Rzadca, K. (eds) Euro-Par 2020: Parallel Processing. Euro-Par 2020. Lecture Notes in Computer Science(), vol 12247. Springer, Cham. https://doi.org/10.1007/978-3-030-57675-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57675-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57674-5

  • Online ISBN: 978-3-030-57675-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics