DDN IME. https://www.ddn.com/products/ime-flash-native-data-cache/
High-Performance Storage list. https://www.vi4io.org/. Accessed Feb 2020
HPC IO Benchmark Repository. https://github.com/hpc/ior. Accessed Dec 2019
TOP500 Supercomputer Lists. https://www.top500.org/lists/top500/. Accessed Feb 2020
AlOnazi, A., Ltaief, H., Keyes, D., Said, I., Thibault, S.: Asynchronous task-based execution of the reverse time migration for the oil and gas industry. In: 2019 IEEE International Conference on Cluster Computing (CLUSTER), pp. 1–11. IEEE (2019). https://doi.org/10.1109/cluster.2019.8891054
Alturkestani, T., Tonellot, T., Ltaief, H., Abdelkhalak, R., Etienne, V., Keyes, D.: MLBS: transparent data caching in hierarchical storage for out-of-core HPC applications. In: Proceedings of the 26th International Conference on High Performance Computing (HiPC), pp. 312–322. IEEE (2019). https://doi.org/10.1109/hipc.2019.00046
Arulraj, J., Perron, M., Pavlo, A.: Write-behind logging. Proc. VLDB Endowment 10(4), 337–348 (2016). https://doi.org/10.14778/3025111.3025116
CrossRef
Google Scholar
Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified platform for task scheduling on heterogeneous multicore architectures. Concurr. Comput.: Pract. Experience 23(2), 187–198 (2011). https://doi.org/10.1002/cpe.1631
CrossRef
Google Scholar
Badam, A., Pai, V.S.: SSDAlloc: hybrid SSD/RAM memory management made easy. In: Proceedings of the 8th USENIX Conference on Networked Systems Design and Implementation, NSDI 2011, pp. 211–224. USENIX Association, USA (2011)
Google Scholar
Baysal, E., Kosloff, D.D., Sherwood, J.W.: Reverse time migration. Geophysics 48(11), 1514–1524 (1983)
CrossRef
Google Scholar
Bhimji, W., Bard, D., Romanus, M., Paul, D., Ovsyannikov, A., Friesen, B., Bryson, M., Correa, J., Lockwood, G.K., Tsulaia, V., et al.: Accelerating Science With the NERSC Burst Buffer Early User Program. Proceedings of the Cray Users’ Group (2016)
Google Scholar
Byna, S., et al.: Parallel I/O, analysis, and visualization of a trillion particle simulation. In: 2012 International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, November 2012. https://doi.org/10.1109/sc.2012.92
Dong, B., Byna, S., Wu, K., Johansen, H., Johnson, J.N., Keen, N., et al.: Data elevator: low-contention data movement in hierarchical storage system. In: 2016 IEEE 23rd International Conference on High Performance Computing (HiPC), pp. 152–161. IEEE (2016). https://doi.org/10.1109/hipc.2016.026
Dong, B., Wang, T., Tang, H., Koziol, Q., Wu, K., Byna, S.: ARCHIE: data analysis acceleration with array caching in hierarchical storage. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 211–220. IEEE (2018). https://doi.org/10.1109/bigdata.2018.8622616
Henseler, D., Landsteiner, B., Petesch, D., Wright, C., Wright, N.J.: Architecture and Design of Cray Datawarp. Cray User Group CUG (2016)
Google Scholar
Ibtesham, D., Arnold, D., Bridges, P.G., Ferreira, K.B., Brightwell, R.: On the viability of compression for reducing the overheads of checkpoint/restart-based fault tolerance. In: 2012 41st International Conference on Parallel Processing, pp. 148–157. IEEE (2012). https://doi.org/10.1109/icpp.2012.45
Kim, S., et al.: Enlightening the I/O path: a holistic approach for application performance. In: 15th USENIX Conference on File and Storage Technologies (FAST 17) (2017)
Google Scholar
Kougkas, A., Devarajan, H., Sun, X.H.: Hermes: a heterogeneous-aware multi-tiered distributed I/O buffering system. In: Proceedings of the 27th International Symposium on High-Performance Parallel and Distributed Computing, pp. 219–230. ACM (2018). https://doi.org/10.1145/3208040.3208059
Lee, K., Sullivan, M.B., Hari, S.K.S., Tsai, T., Keckler, S.W., Erez, M.: GPU snapshot: checkpoint offloading for GPU-dense systems. In: Proceedings of the ACM International Conference on Supercomputing, ICS 2019, pp. 171–183 (2019). https://doi.org/10.1145/3330345.3330361
Liu, N., et al.: On the role of burst buffers in leadership-class storage systems. In: Proceedings of the 28th Symposium on Mass Storage Systems and Technologies, pp. 1–11. IEEE (2012). https://doi.org/10.1109/msst.2012.6232369
Luu, H., Winslett, M., Gropp, W., Ross, R., Carns, P., Harms, K., Prabhat, M., Byna, S., Yao, Y.: A multiplatform study of I/O behavior on petascale supercomputers. In: Proceedings of the 24th International Symposium on High-Performance Parallel and Distributed Computing. pp. 33–44 (2015). https://doi.org/10.1145/2749246.2749269
Markomanolis, G.S., Hadri, B., Khurram, R., Feki, S.: Scientific applications performance evaluation on burst buffer. In: Kunkel, J.M., Yokota, R., Taufer, M., Shalf, J. (eds.) ISC High Performance 2017. LNCS, vol. 10524, pp. 701–711. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67630-2_50
CrossRef
Google Scholar
Martinasso, M., Kwasniewski, G., Alam, S.R., Schulthess, T.C., Hoefler, T.: A PCIe Congestion-aware performance model for densely populated accelerator servers. In: SC 2016: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 739–749. IEEE (2016). https://doi.org/10.1109/sc.2016.62
McCalpin, J.: Memory bandwidth and machine balance in high performance computers. Technical Committee on Computer Architecture Newsletter, pp. 19–25 (1995)
Google Scholar
Patrick, C.M., Kandemir, M., Karaköy, M., Son, S.W., Choudhary, A.: Cashing in on hints for better prefetching and caching in PVFS and MPI-IO. In: Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, HPDC 2010, pp. 191–202. ACM (2010). https://doi.org/10.1145/1851476.1851499
Sava, P., Hill, S.: Overview and classification of wavefield seismic imaging methods. Lead. Edge 28(2), 170–183 (2009). https://doi.org/10.1190/1.3086052
CrossRef
Google Scholar
Scott, D.S.: Parallel I/O and solving out of core systems of linear equations. In: Proceedings of the 1993 DAGS/PC Symposium, pp. 123–130 (1993)
Google Scholar
Silberstein, M., Ford, B., Keidar, I., Witchel, E.: GPUfs: Integrating a file system with GPUs. In: Proceedings of the Eighteenth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2013, pp. 485–498. Association for Computing Machinery (2013). https://doi.org/10.1145/2451116.2451169
Thompson, A., Newburn, C.: GPUDirect Storage: A Direct Path Between Storage and GPU Memory, August 2019. https://devblogs.nvidia.com/gpudirect-storage/. Accessed May 2020
Vazhkudai, S., et al.: The design, deployment, and evaluation of the CORAL pre-exascale systems. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis, pp. 52:1–52:12. IEEE (2018). https://doi.org/10.1109/SC.2018.00055
Wang, C., Vazhkudai, S.S., Ma, X., Meng, F., Kim, Y., Engelmann, C.: NVMalloc: exposing an aggregate SSD store as a memory partition in extreme-scale machines. In: Proceedings of the 26th International Parallel and Distributed Processing Symposium. IEEE (2012). https://doi.org/10.1109/ipdps.2012.90
Wang, T., Byna, S., Dong, B., Tang, H.: UniviStor: integrated hierarchical and distributed storage for HPC. In: 2018 IEEE International Conference on Cluster Computing (CLUSTER), pp. 134–144. IEEE (2018). https://doi.org/10.1109/cluster.2018.00025
Wang, T., Mohror, K., Moody, A., Sato, K., Yu, W.: An ephemeral burst-buffer file system for scientific applications. In: SC16: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, November 2016. https://doi.org/10.1109/sc.2016.68
Wang, T., Oral, S., Wang, Y., Settlemyer, B., Atchley, S., Yu, W.: BurstMem: a high-performance burst buffer system for scientific applications. In: 2014 IEEE International Conference on Big Data (Big Data), IEEE, October 2014. https://doi.org/10.1109/bigdata.2014.7004215