Abstract
Manual processes in accounting can introduce errors that affect business decisions. Automation (or at least partial automation of accounting processes) can help to minimise human errors. In this paper, we investigate methods for the automation of one of the processes involved in invoice posting – the assignment of account codes to posting entries – using various classification methods. We show that machine learning-based methods can reach a precision of up to 93% for debit account code classification and even up to 98% for credit account code classification.
Keywords
- Accounting
- Machine learning
- Classification
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Baldwin, A.A., Brown, C.E., Trinkle, B.S.: Opportunities for artificial intelligence development in the accounting domain: the case for auditing. Intell. Syst. Account. Finan. Manage. 14(3), 77–86 (2006). https://doi.org/10.1002/isaf.277. http://doi.wiley.com/10.1002/isaf.277
Bengtsson, H., Jansson, J.: Using classification algorithms for smart suggestions in accounting systems. Master’s thesis, Department of Computer Science & Engineering, Chalmers University of Technology (2015)
Bergdorf, J.: Machine learning and rule induction in invoice processing: Comparing machine learning methods in their ability to assign account codes in the bookkeeping process (2018)
Collins, M.: Discriminative training methods for hidden Markov models: theory and experiments with perceptron algorithms. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 1–8. Association for Computational Linguistics (2002)
Demšar, J., et al.: Orange: data mining toolbox in python. J. Mach. Learn. Res. 14, 2349–2353 (2013). http://jmlr.org/papers/v14/demsar13a.html
Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: a library for large linear classification. J. Mach. Learn. Res. 9(Aug), 1871–1874 (2008)
Chua, F. (2013 ACCA): Digital Darwinism: thriving in the face of technology change Acknowledgements (2013). https://www.accaglobal.com/content/dam/acca/global/PDF-technical/futures/pol-afa-tt2.pdf
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv preprint arXiv:1412.6980
Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)
Mateush, A., Sharma, R., Dumas, M., Plotnikova, V., Slobozhan, I., Übi, J.: Building payment classification models from rules and crowdsourced labels: a case study. In: Matulevičius, R., Dijkman, R. (eds.) CAiSE 2018. LNBIP, vol. 316, pp. 85–97. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92898-2_7
Ministry of Finance of the Republic of Latvia: Par “uzņēmumu, uzņēmējsabiedrbu un organizāciju vienoto grāmatvedbas kontu plānu” (May 1993). https://likumi.lv/doc.php?id=232076
Nielsen, D.: Tree boosting with xgboost. NTNU Norwegian University of Science and Technology (2016)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Pinnis, M.: Latvian tweet corpus and investigation of sentiment analysis for Latvian. In: Human Language Technologies - The Baltic Perspective - Proceedings of the Seventh International Conference Baltic HLT 2018, pp. 112–119. IOS Press, Tartu, Estonia (2018). https://doi.org/10.3233/978-1-61499-912-6-112
Robnik-Šikonja, M., Kononenko, I.: An adaptation of relief for attribute estimation in regression. In: Proceedings of the Fourteenth International Conference on Machine Learning, ICML’97, vol. 5, pp. 296–304 (1997)
Smith, L.: User considerations when applying machine learning technology to accounting tasks. Ph.D. thesis. Stellenbosch University, Stellenbosch (2018)
Stefanowski, J.: The rough set based rule induction technique for classification problems. In: Proceedings of 6th European Conference on Intelligent Techniques and Soft Computing EUFIT, vol. 98 (1998)
Acknowledgements
The research has been supported by the ICT Competence Centre (www.itkc.lv) within the project “2.6. Research of artificial intelligence methods and creation of complex systems for automation of company accounting processes and decision modeling” of EU Structural funds, ID n\(^{\circ }\) 1.2.1.1/18/A/003.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Beļskis, Z., Zirne, M., Pinnis, M. (2020). Features and Methods for Automatic Posting Account Classification. In: Robal, T., Haav, HM., Penjam, J., Matulevičius, R. (eds) Databases and Information Systems. DB&IS 2020. Communications in Computer and Information Science, vol 1243. Springer, Cham. https://doi.org/10.1007/978-3-030-57672-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-57672-1_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57671-4
Online ISBN: 978-3-030-57672-1
eBook Packages: Computer ScienceComputer Science (R0)