Skip to main content

Incremental Methods for Checking Real-Time Consistency

  • Conference paper
  • First Online:
Formal Modeling and Analysis of Timed Systems (FORMATS 2020)

Abstract

Requirements engineering is a key phase in the development process. Ensuring that requirements are consistent is essential so that they do not conflict and admit implementations. We consider the formal verification of rt-consistency, which imposes that the inevitability of definitive errors of a requirement should be anticipated, and that of partial consistency, which was recently introduced as a more effective check. We generalize and formalize both notions for discrete-time timed automata, develop three incremental algorithms, and present experimental results.

This work was partially funded by ANR project Ticktac (ANR-18-CE40-0015), and by a MERCE/Inria collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For SUPs, such configurations correspond to action phases, hence the name.

References

  1. Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032042

    Chapter  MATH  Google Scholar 

  2. Aichernig, B.K., Hörmaier, K., Lorber, F., Ničković, D., Tiran, S.: Require, test, and trace it. Int. J. Softw. Tools Technol. Transfer 19(4), 409–426 (2017)

    Article  Google Scholar 

  3. Benveniste, A., et al.: Contracts for system design. Found. Trends Electron. Des. Autom. 12(2–3), 124–400 (2018)

    Article  Google Scholar 

  4. Becker, J.S.: Analyzing consistency of formal requirements. Electron. Commun. EASST (AVOCS 2018) 76 (2019)

    Google Scholar 

  5. Bienmüller, T., Teige, T., Eggers, A., Stasch, M.: Modeling requirements for quantitative consistency analysis and automatic test case generation. In: Workshop on Formal and Model-Driven Techniques for Developing Trustworthy Systems at 18th International Conference on Formal Engineering Methods (2016)

    Google Scholar 

  6. Ellen, C., Sieverding, S., Hungar, H.: Detecting consistencies and inconsistencies of pattern-based functional requirements. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol. 8718, pp. 155–169. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10702-8_11

    Chapter  Google Scholar 

  7. Hoenicke, J.: Combination of Processes, Data, and Time. Ph.D. thesis, University of Oldenburg(2006)

    Google Scholar 

  8. Jéron, T., Markey, N., Mentré, D., Noguchi, R., Sankur, O.: Incremental methods for checking real-time consistency. Technical report 2007.01014, arXiv (2020)

    Google Scholar 

  9. NuSMV: a new symbolic model checker. http://nusmv.fbk.eu/

  10. Post A., Hoenicke J., Podelski A.: rt-Inconsistency: a new property for real-time requirements. In: Giannakopoulou D., Orejas F. (eds.) FASE 2011. LNCS, vol 6603, pp.34–49. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19811-3_4

  11. Post, A., Hoenicke, J., Podelski, A.: Vacuous real-time requirements. In: IEEE 19th International Requirements Engineering Conference, pp. 153–162 (August 2011)

    Google Scholar 

  12. Teige, T., Bienmüller, T., Holberg, H.J.: Universal pattern: formalization, testing, coverage, verification, and test case generation for safety-critical requirements. In: Wimmer, R. (ed.) 19th GI/ITG/GMM Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen, MBMV’16, pp. 6–9. Albert-Ludwigs-Universität Freiburg (2016)

    Google Scholar 

  13. The Z3 theorem prover. https://github.com/Z3Prover/z3

  14. Zhou, C., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process. Lett. (IPL) 40(5), 269–276 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Jéron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jéron, T., Markey, N., Mentré, D., Noguchi, R., Sankur, O. (2020). Incremental Methods for Checking Real-Time Consistency. In: Bertrand, N., Jansen, N. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2020. Lecture Notes in Computer Science(), vol 12288. Springer, Cham. https://doi.org/10.1007/978-3-030-57628-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57628-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57627-1

  • Online ISBN: 978-3-030-57628-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics