Abstract
Necrotizing skin and soft tissue infections (NSTIs) are severe life-threatening and rapidly progressing infections. Beta-hemolytic streptococci, particularly S. pyogenes (group A streptococci (GAS)) but also S. dysgalactiae subsp. equisimilis (SDSE, most group G and C streptococcus), are the main causative agents of monomicrobial NSTIs and certain types, such as emm1 and emm3, are over-represented in NSTI cases. An arsenal of bacterial virulence factors contribute to disease pathogenesis, which is a complex and multifactorial process. In this chapter, we summarize data that have provided mechanistic and immuno-pathologic insight into host-pathogens interactions that contribute to tissue pathology in streptococcal NSTIs. The role of streptococcal surface associated and secreted factors contributing to the hyper-inflammatory state and immune evasion, bacterial load in the tissue and persistence strategies, including intracellular survival and biofilm formation, as well as strategies to mimic NSTIs in vitro are discussed.
Keywords
- Streptococcus
- Necrotizing soft tissue infections
- Pathogenesis
- Neutrophils
- Macrophages
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Akesson P, Sjoholm AG, Bjorck L (1996) Protein SIC, a novel extracellular protein of Streptococcus pyogenes interfering with complement function. J Biol Chem 271:1081–1088
Akesson P, Herwald H, Rasmussen M, Hakansson K, Abrahamson M, Hasan AA, Schmaier AH, Muller-Esterl W, Bjorck L (2010) Streptococcal inhibitor of complement-mediated lysis (SIC): an anti-inflammatory virulence determinant. Microbiology 156:3660–3668
Akiyama H, Morizane S, Yamasaki O, Oono T, Iwatsuki K (2003) Assessment of Streptococcus pyogenes microcolony formation in infected skin by confocal laser scanning microscopy. J Dermatol Sci 32:193–199
Anaya DA, Mcmahon K, Nathens AB, Sullivan SR, Foy H, Bulger E (2005) Predictors of mortality and limb loss in necrotizing soft tissue infections. Arch Surg 140:151–157. discussion 158
Arad G, Levy R, Nasie I, Hillman D, Rotfogel Z, Barash U, Supper E, Shpilka T, Minis A, Kaempfer R (2011) Binding of superantigen toxins into the CD28 homodimer interface is essential for induction of cytokine genes that mediate lethal shock. PLoS Biol 9:e1001149
Ashbaugh CD, Wessels MR (2001) Absence of a cysteine protease effect on bacterial virulence in two murine models of human invasive group A streptococcal infection. Infect Immun 69:6683–6688
Ashbaugh CD, Warren HB, Carey VJ, Wessels MR (1998) Molecular analysis of the role of the group A streptococcal cysteine protease, hyaluronic acid capsule, and M protein in a murine model of human invasive soft-tissue infection. J Clin Invest 102:550–560
Aziz RK, Ismail SA, Park HW, Kotb M (2004a) Post-proteomic identification of a novel phage-encoded streptodornase, Sda1, in invasive M1T1 Streptococcus pyogenes. Mol Microbiol 54:184–197
Aziz RK, Pabst MJ, Jeng A, Kansal R, Low DE, Nizet V, Kotb M (2004b) Invasive M1T1 group A Streptococcus undergoes a phase-shift in vivo to prevent proteolytic degradation of multiple virulence factors by SpeB. Mol Microbiol 51:123–134
Bakleh M, Wold LE, Mandrekar JN, Harmsen WS, Dimashkieh HH, Baddour LM (2005) Correlation of histopathologic findings with clinical outcome in necrotizing fasciitis. Clin Infect Dis 40:410–414
Barnett TC, Cole JN, Rivera-Hernandez T, Henningham A, Paton JC, Nizet V, Walker MJ (2015) Streptococcal toxins: role in pathogenesis and disease. Cell Microbiol 17:1721–1741
Bastiat-Sempe B, Love JF, Lomayesva N, Wessels MR (2014) Streptolysin O and NAD-glycohydrolase prevent phagolysosome acidification and promote group A Streptococcus survival in macrophages. MBio 5:e01690–e01614
Beall B, Facklam R, Thompson T (1996) Sequencing emm-specific PCR products for routine and accurate typing of group A streptococci. J Clin Microbiol 34:953–958
Beisswenger C, Bals R (2005) Functions of antimicrobial peptides in host defense and immunity. Curr Protein Pept Sci 6:255–264
Bessen DE (2009) Population biology of the human restricted pathogen, Streptococcus pyogenes. Infect Genet Evol 9:581–593
Bessen DE, Mcshan WM, Nguyen SV, Shetty A, Agrawal S, Tettelin H (2015) Molecular epidemiology and genomics of group A Streptococcus. Infect Genet Evol 33:393–418
Bjarnsholt T, Buhlin K, Dufrene YF, Gomelsky M, Moroni A, Ramstedt M, Rumbaugh KP, Schulte T, Sun L, Akerlund B, Romling U (2018) Biofilm formation - what we can learn from recent developments. J Intern Med 284:332–345
Borregaard N, Sorensen OE, Theilgaard-Monch K (2007) Neutrophil granules: a library of innate immunity proteins. Trends Immunol 28:340–345
Boxrud PD, Verhamme IM, Bock PE (2004) Resolution of conformational activation in the kinetic mechanism of plasminogen activation by streptokinase. J Biol Chem 279:36633–36641
Bruun T, Rath E, Bruun Madsen M, Oppegaard O, Nekludov M, Arnell P, Karlsson Y, Babbar A, Bergey F, Itzek A, Hyldegaard O, Norrby-Teglund A, Skrede S, INFECT Study Group (2020) Risk factors and predictors of mortality in streptococcal necrotizing soft-tissue infections: a multicenter prospective study. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa027
Chandrahas V, Glinton K, Liang Z, Donahue DL, Ploplis VA, Castellino FJ (2015) Direct host plasminogen binding to bacterial surface M-protein in pattern D strains of Streptococcus pyogenes is required for activation by its natural coinherited SK2b protein. J Biol Chem 290:18833–18842
Chandrasekaran S, Caparon MG (2016) The NADase-negative variant of the Streptococcus pyogenes toxin NAD(+) glycohydrolase induces JNK1-mediated programmed cellular necrosis. MBio 7:e02215–e02215
Chatila T, Geha RS (1993) Signal transduction by microbial superantigens via MHC class II molecules. Immunol Rev 131:43–59
Chella Krishnan K, Mukundan S, Alagarsamy J, Hur J, Nookala S, Siemens N, Svensson M, Hyldegaard O, Norrby-Teglund A, Kotb M (2016) Genetic architecture of group A streptococcal necrotizing soft tissue infections in the mouse. PLoS Pathog 12:e1005732
Chizzolini C, Chicheportiche R, Burger D, Dayer JM (1997) Human Th1 cells preferentially induce interleukin (IL)-1beta while Th2 cells induce IL-1 receptor antagonist production upon cell/cell contact with monocytes. Eur J Immunol 27:171–177
Cole JN, Mcarthur JD, Mckay FC, Sanderson-Smith ML, Cork AJ, Ranson M, Rohde M, Itzek A, Sun H, Ginsburg D, Kotb M, Nizet V, Chhatwal GS, Walker MJ (2006) Trigger for group A streptococcal M1T1 invasive disease. FASEB J 20:1745–1747
Cole JN, Barnett TC, Nizet V, Walker MJ (2011) Molecular insight into invasive group A streptococcal disease. Nat Rev Microbiol 9:724–736
Collin M, Svensson MD, Sjoholm AG, Jensenius JC, Sjobring U, Olsen A (2002) EndoS and SpeB from Streptococcus pyogenes inhibit immunoglobulin-mediated opsonophagocytosis. Infect Immun 70:6646–6651
Commons RJ, Smeesters PR, Proft T, Fraser JD, Robins-Browne R, Curtis N (2014) Streptococcal superantigens: categorization and clinical associations. Trends Mol Med 20:48–62
Conley J, Olson ME, Cook LS, Ceri H, Phan V, Davies HD (2003) Biofilm formation by group a streptococci: is there a relationship with treatment failure? J Clin Microbiol 41:4043–4048
Cortes G, Wessels MR (2009) Inhibition of dendritic cell maturation by group A Streptococcus. J Infect Dis 200:1152–1161
Courtney HS, Ofek I, Simpson WA, Hasty DL, Beachey EH (1986) Binding of Streptococcus pyogenes to soluble and insoluble fibronectin. Infect Immun 53:454–459
Courtney HS, Hasty DL, Dale JB (2002) Molecular mechanisms of adhesion, colonization, and invasion of group A streptococci. Ann Med 34:77–87
Cywes Bentley C, Hakansson A, Christianson J, Wessels MR (2005) Extracellular group A Streptococcus induces keratinocyte apoptosis by dysregulating calcium signalling. Cell Microbiol 7:945–955
Darenberg J, Luca-Harari B, Jasir A, Sandgren A, Pettersson H, Schalen C, Norgren M, Romanus V, Norrby-Teglund A, Normark BH (2007) Molecular and clinical characteristics of invasive group A streptococcal infection in Sweden. Clin Infect Dis 45:450–458
Davies HD, Mcgeer A, Schwartz B, Green K, Cann D, Simor AE, Low DE, Fletcher A, Kaul R, Scriver S, Willey B, Demers B, Gold W, Lovgren M, Talbot J, Naus M (1996) Invasive group a streptococcal infections in Ontario, Canada. N Engl J Med 335:547–554
Dombek PE, Cue D, Sedgewick J, Lam H, Ruschkowski S, Finlay BB, Cleary PP (1999) High-frequency intracellular invasion of epithelial cells by serotype M1 group A streptococci: M1 protein-mediated invasion and cytoskeletal rearrangements. Mol Microbiol 31:859–870
Edwards RJ, Taylor GW, Ferguson M, Murray S, Rendell N, Wrigley A, Bai Z, Boyle J, Finney SJ, Jones A, Russell HH, Turner C, Cohen J, Faulkner L, Sriskandan S (2005) Specific C-terminal cleavage and inactivation of interleukin-8 by invasive disease isolates of Streptococcus pyogenes. J Infect Dis 192:783–790
Egesten A, Olin AI, Linge HM, Yadav M, Morgelin M, Karlsson A, Collin M (2009) SpeB of Streptococcus pyogenes differentially modulates antibacterial and receptor activating properties of human chemokines. PLoS One 4:e4769
Elliott SD (1945) A proteolytic enzyme produced by group A Streptococci with special reference to its effect on the type-specific m antigen. J Exp Med 81:573–592
Emgard J, Bergsten H, Mccormick JK, Barrantes I, Skrede S, Sandberg JK, Norrby-Teglund A (2019) MAIT cells are major contributors to the cytokine response in group A Streptococcal toxic shock syndrome. Proc Natl Acad Sci U S A 116:25923–25931
Fernie-King BA, Seilly DJ, Willers C, Wurzner R, Davies A, Lachmann PJ (2001) Streptococcal inhibitor of complement (SIC) inhibits the membrane attack complex by preventing uptake of C567 onto cell membranes. Immunology 103:390–398
Fernie-King BA, Seilly DJ, Davies A, Lachmann PJ (2002) Streptococcal inhibitor of complement inhibits two additional components of the mucosal innate immune system: secretory leukocyte proteinase inhibitor and lysozyme. Infect Immun 70:4908–4916
Fernie-King BA, Seilly DJ, Lachmann PJ (2004) The interaction of streptococcal inhibitor of complement (SIC) and its proteolytic fragments with the human beta defensins. Immunology 111:444–452
Fiedler T, Koller T, Kreikemeyer B (2015) Streptococcus pyogenes biofilms-formation, biology, and clinical relevance. Front Cell Infect Microbiol 5:15
Flaherty RA, Donahue DL, Carothers KE, Ross JN, Ploplis VA, Castellino FJ, Lee SW (2018) Neutralization of streptolysin S-dependent and independent inflammatory cytokine IL-1beta activity reduces pathology during early GROUP A Streptococcal skin infection. Front Cell Infect Microbiol 8:211
Frick IM, Akesson P, Rasmussen M, Schmidtchen A, Bjorck L (2003a) SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J Biol Chem 278:16561–16566
Frick IM, Schmidtchen A, Sjobring U (2003b) Interactions between M proteins of Streptococcus pyogenes and glycosaminoglycans promote bacterial adhesion to host cells. Eur J Biochem 270:2303–2311
Frick IM, Shannon O, Akesson P, Morgelin M, Collin M, Schmidtchen A, Bjorck L (2011) Antibacterial activity of the contact and complement systems is blocked by SIC, a protein secreted by Streptococcus pyogenes. J Biol Chem 286:1331–1340
Gautam N, Olofsson AM, Herwald H, Iversen LF, Lundgren-Akerlund E, Hedqvist P, Arfors KE, Flodgaard H, Lindbom L (2001) Heparin-binding protein (HBP/CAP37): a missing link in neutrophil-evoked alteration of vascular permeability. Nat Med 7:1123–1127
Goldmann O, Von Kockritz-Blickwede M, Holtje C, Chhatwal GS, Geffers R, Medina E (2007) Transcriptome analysis of murine macrophages in response to infection with Streptococcus pyogenes reveals an unusual activation program. Infect Immun 75:4148–4157
Gratz N, Siller M, Schaljo B, Pirzada ZA, Gattermeier I, Vojtek I, Kirschning CJ, Wagner H, Akira S, Charpentier E, Kovarik P (2008) Group A streptococcus activates type I interferon production and MyD88-dependent signaling without involvement of TLR2, TLR4, and TLR9. J Biol Chem 283:19879–19887
Gryllos I, Tran-Winkler HJ, Cheng MF, Chung H, Bolcome R 3rd, Lu W, Lehrer RI, Wessels MR (2008) Induction of group A Streptococcus virulence by a human antimicrobial peptide. Proc Natl Acad Sci U S A 105:16755–16760
Gubba S, Low DE, Musser JM (1998) Expression and characterization of group A Streptococcus extracellular cysteine protease recombinant mutant proteins and documentation of seroconversion during human invasive disease episodes. Infect Immun 66:765–770
Hansen MB, Rasmussen LS, Svensson M, Chakrakodi B, Bruun T, Madsen MB, Perner A, Garred P, Hyldegaard O, Norrby-Teglund A, INFECT Study Group (2017) Association between cytokine response, the LRINEC score and outcome in patients with necrotising soft tissue infection: a multicentre, prospective study. Sci Rep 7:42179
Harbrecht BG, Nash NA (2016) Necrotizing soft tissue infections: a review. Surg Infect 17:503–509
Hertzen E, Johansson L, Wallin R, Schmidt H, Kroll M, Rehn AP, Kotb M, Morgelin M, Norrby-Teglund A (2010) M1 protein-dependent intracellular trafficking promotes persistence and replication of Streptococcus pyogenes in macrophages. J Innate Immun 2:534–545
Hertzen E, Johansson L, Kansal R, Hecht A, Dahesh S, Janos M, Nizet V, Kotb M, Norrby-Teglund A (2012) Intracellular streptococcus pyogenes in human macrophages display an altered gene expression profile. PLoS One 7(4):e35218
Herwald H, Cramer H, Morgelin M, Russell W, Sollenberg U, Norrby-Teglund A, Flodgaard H, Lindbom L, Bjorck L (2004) M protein, a classical bacterial virulence determinant, forms complexes with fibrinogen that induce vascular leakage. Cell 116:367–379
Hidalgo-Grass C, Dan-Goor M, Maly A, Eran Y, Kwinn LA, Nizet V, Ravins M, Jaffe J, Peyser A, Moses AE, Hanski E (2004) Effect of a bacterial pheromone peptide on host chemokine degradation in group A streptococcal necrotising soft-tissue infections. Lancet 363:696–703
Hidalgo-Grass C, Mishalian I, Dan-Goor M, Belotserkovsky I, Eran Y, Nizet V, Peled A, Hanski E (2006) A streptococcal protease that degrades CXC chemokines and impairs bacterial clearance from infected tissues. EMBO J 25:4628–4637
Higashi DL, Biais N, Donahue DL, Mayfield JA, Tessier CR, Rodriguez K, Ashfeld BL, Luchetti J, Ploplis VA, Castellino FJ, Lee SW (2016) Activation of band 3 mediates group A Streptococcus streptolysin S-based beta-haemolysis. Nat Microbiol 1:15004
Hollands A, Aziz RK, Kansal R, Kotb M, Nizet V, Walker MJ (2008) A naturally occurring mutation in ropB suppresses SpeB expression and reduces M1T1 group A streptococcal systemic virulence. PLoS One 3:e4102
Hollands A, Gonzalez D, Leire E, Donald C, Gallo RL, Sanderson-Smith M, Dorrestein PC, Nizet V (2012) A bacterial pathogen co-opts host plasmin to resist killing by cathelicidin antimicrobial peptides. J Biol Chem 287:40891–40897
Holm SE, Norrby A, Bergholm AM, Norgren M (1992) Aspects of pathogenesis of serious group-A Streptococcal infections in Sweden, 1988-1989. J Infect Dis 166:31–37
Hsu LC, Enzler T, Seita J, Timmer AM, Lee CY, Lai TY, Yu GY, Lai LC, Temkin V, Sinzig U, Aung T, Nizet V, Weissman IL, Karin M (2011) IL-1 beta-driven neutrophilia preserves antibacterial defense in the absence of the kinase IKK beta. Nat Immunol 12:144–U54
Humar D, Datta V, Bast DJ, Beall B, De Azavedo JC, Nizet V (2002) Streptolysin S and necrotising infections produced by group G streptococcus. Lancet 359:124–129
Johansson L, Norrby-Teglund A (2013) Immunopathogenesis of streptococcal deep tissue infections. Curr Top Microbiol Immunol 368:173–188
Johansson L, Thulin P, Sendi P, Hertzen E, Linder A, Akesson P, Low DE, Agerberth B, Norrby-Teglund A (2008) Cathelicidin LL-37 in severe Streptococcus pyogenes soft tissue infections in humans. Infect Immun 76:3399–3404
Johansson L, Linner A, Sunden-Cullberg J, Haggar A, Herwald H, Lore K, Treutiger CJ, Norrby-Teglund A (2009) Neutrophil-derived hyperresistinemia in severe acute streptococcal infections. J Immunol 183:4047–4054
Johansson L, Thulin P, Low DE, Norrby-Teglund A (2010) Getting under the skin: the immunopathogenesis of Streptococcus pyogenes deep tissue infections. Clin Infect Dis 51:58–65
Johansson L, Snall J, Sendi P, Linner A, Thulin P, Linder A, Treutiger CJ, Norrby-Teglund A (2014) HMGB1 in severe soft tissue infections caused by Streptococcus pyogenes. Front Cell Infect Microbiol 4:4
Kachroo P, Eraso JM, Olsen RJ, Zhu L, Kubiak SL, Pruitt L, Yerramilli P, Cantu CC, Ojeda Saavedra M, Pensar J, Corander J, Jenkins L, Kao L, Granillo A, Porter AR, Deleo FR, Musser JM (2020) New pathogenesis mechanisms and translational leads identified by multidimensional analysis of necrotizing myositis in primates. MBio 11(1):e03363-19
Kahn F, Morgelin M, Shannon O, Norrby-Teglund A, Herwald H, Olin AI, Bjorck L (2008) Antibodies against a surface protein of Streptococcus pyogenes promote a pathological inflammatory response. PLoS Pathog 4:e1000149
Kansal RG, Mcgeer A, Low DE, Norrby-Teglund A, Kotb M (2000) Inverse relation between disease severity and expression of the streptococcal cysteine protease, SpeB, among clonal M1T1 isolates recovered from invasive group A streptococcal infection cases. Infect Immun 68:6362–6369
Kapur V, Majesky MW, Li LL, Black RA, Musser JM (1993) Cleavage of interleukin 1 beta (IL-1 beta) precursor to produce active IL-1 beta by a conserved extracellular cysteine protease from Streptococcus pyogenes. Proc Natl Acad Sci U S A 90:7676–7680
Kasper KJ, Zeppa JJ, Wakabayashi AT, Xu SX, Mazzuca DM, Welch I, Baroja ML, Kotb M, Cairns E, Cleary PP, Haeryfar SM, Mccormick JK (2014) Bacterial superantigens promote acute nasopharyngeal infection by Streptococcus pyogenes in a human MHC class II-dependent manner. PLoS Pathog 10:e1004155
Kaul R, Mcgeer A, Low DE, Green K, Schwartz B (1997) Population-based surveillance for group A streptococcal necrotizing fasciitis: clinical features, prognostic indicators, and microbiologic analysis of seventy-seven cases. Ontario Group A Streptococcal Study. Am J Med 103:18–24
Keller N, Woytschak J, Heeb LEM, Marques Maggio E, Mairpady Shambat S, Snall J, Hyldegaard O, Boyman O, Norrby-Teglund A, Zinkernagel AS (2019) Group A streptococcal DNase Sda1 impairs plasmacytoid dendritic cells’ type 1 interferon response. J Invest Dermatol 139:1284–1293
Keyel PA, Roth R, Yokoyama WM, Heuser JE, Salter RD (2013) Reduction of streptolysin O (SLO) pore-forming activity enhances inflammasome activation. Toxins (Basel) 5:1105–1118
Khil J, Im M, Heath A, Ringdahl U, Mundada L, Cary Engleberg N, Fay WP (2003) Plasminogen enhances virulence of group A streptococci by streptokinase-dependent and streptokinase-independent mechanisms. J Infect Dis 188:497–505
Kobayashi SD, Braughton KR, Whitney AR, Voyich JM, Schwan TG, Musser JM, Deleo FR (2003) Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc Natl Acad Sci U S A 100:10948–10953
Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175
Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3:a010306
Kotb M, Norrby-Teglund A, Mcgeer A, El-Sherbini H, Dorak MT, Khurshid A, Green K, Peeples J, Wade J, Thomson G, Schwartz B, Low DE (2002) An immunogenetic and molecular basis for differences in outcomes of invasive group A streptococcal infections. Nat Med 8:1398–1404
Kreikemeyer B, Klenk M, Podbielski A (2004) The intracellular status of Streptococcus pyogenes: role of extracellular matrix-binding proteins and their regulation. Int J Med Microbiol 294:177–188
Kuo CF, Wu JJ, Lin KY, Tsai PJ, Lee SC, Jin YT, Lei HY, Lin YS (1998) Role of streptococcal pyrogenic exotoxin B in the mouse model of group A streptococcal infection. Infect Immun 66:3931–3935
Kuo CF, Lin YS, Chuang WJ, Wu JJ, Tsao N (2008) Degradation of complement 3 by streptococcal pyrogenic exotoxin B inhibits complement activation and neutrophil opsonophagocytosis. Infect Immun 76:1163–1169
Lamagni TL, Darenberg J, Luca-Harari B, Siljander T, Efstratiou A, Henriques-Normark B, Vuopio-Varkila J, Bouvet A, Creti R, Ekelund K, Koliou M, Reinert RR, Stathi A, Strakova L, Ungureanu V, Schalen C, Jasir A, Grp S-ES (2008) Epidemiology of severe Streptococcus pyogenes disease in Europe. J Clin Microbiol 46:2359–2367
Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926
Lapenta D, Rubens C, Chi E, Cleary PP (1994) Group A streptococci efficiently invade human respiratory epithelial cells. Proc Natl Acad Sci U S A 91:12115–12119
Larock CN, Todd J, Larock DL, Olson J, O’Donoghue AJ, Robertson AAB, Cooper MA, Hoffman HM, Nizet V (2016) IL-1beta is an innate immune sensor of microbial proteolysis. Sci Immunol 1:eaah3539
Lembke C, Podbielski A, Hidalgo-Grass C, Jonas L, Hanski E, Kreikemeyer B (2006) Characterization of biofilm formation by clinically relevant serotypes of group A streptococci. Appl Environ Microbiol 72:2864–2875
Levy R, Rotfogel Z, Hillman D, Popugailo A, Arad G, Supper E, Osman F, Kaempfer R (2016) Superantigens hyperinduce inflammatory cytokines by enhancing the B7-2/CD28 costimulatory receptor interaction. Proc Natl Acad Sci U S A 113:E6437–E6446
Liu TY, Elliott SD (1965) Streptococcal proteinase: the zymogen to enzyme transfromation. J Biol Chem 240:1138–1142
Llewelyn M, Cohen J (2002) Superantigens: microbial agents that corrupt immunity. Lancet Infect Dis 2:156–162
Loof TG, Goldmann O, Gessner A, Herwald H, Medina E (2010) Aberrant inflammatory response to Streptococcus pyogenes in mice lacking myeloid differentiation factor 88. Am J Pathol 176:754–763
Low DE (2013) Toxic shock syndrome: major advances in pathogenesis, but not treatment. Crit Care Clin 29:651–675
Luca-Harari B, Darenberg J, Neal S, Siljander T, Strakova L, Tanna A, Creti R, Ekelund K, Koliou M, Tassios PT, Van Der Linden M, Straut M, Vuopio-Varkila J, Bouvet A, Efstratiou A, Schalen C, Henriques-Normark B, Strep ESG, Jasir A (2009) Clinical and microbiological characteristics of severe Streptococcus pyogenes disease in Europe. J Clin Microbiol 47:1155–1165
Lukomski S, Sreevatsan S, Amberg C, Reichardt W, Woischnik M, Podbielski A, Musser JM (1997) Inactivation of Streptococcus pyogenes extracellular cysteine protease significantly decreases mouse lethality of serotype M3 and M49 strains. J Clin Invest 99:2574–2580
Lukomski S, Burns EH Jr, Wyde PR, Podbielski A, Rurangirwa J, Moore-Poveda DK, Musser JM (1998) Genetic inactivation of an extracellular cysteine protease (SpeB) expressed by Streptococcus pyogenes decreases resistance to phagocytosis and dissemination to organs. Infect Immun 66:771–776
Lukomski S, Montgomery CA, Rurangirwa J, Geske RS, Barrish JP, Adams GJ, Musser JM (1999) Extracellular cysteine protease produced by Streptococcus pyogenes participates in the pathogenesis of invasive skin infection and dissemination in mice. Infect Immun 67:1779–1788
Madsen MB, Skrede S, Bruun T, Arnell P, Rosen A, Nekludov M, Karlsson Y, Bergey F, Saccenti E, Martins Dos Santos VAP, Perner A, Norrby-Teglund A, Hyldegaard O (2018) Necrotizing soft tissue infections - a multicentre, prospective observational study (INFECT): protocol and statistical analysis plan. Acta Anaesthesiol Scand 62:272–279
Madsen MB, Skrede S, Perner A, Arnell P, Nekludov M, Bruun T, Karlsson Y, Hansen MB, Polzik P, Hedetoft M, Rosen A, Saccenti E, Bergey F, Martins Dos Santos VAP, INFECT Study Group, Norrby-Teglund A, Hyldegaard O (2019) Patient’s characteristics and outcomes in necrotising soft-tissue infections: results from a Scandinavian, multicentre, prospective cohort study. Intensive Care Med 45:1241–1251
Mairpady Shambat S, Chen P, Nguyen Hoang AT, Bergsten H, Vandenesch F, Siemens N, Lina G, Monk IR, Foster TJ, Arakere G, Svensson M, Norrby-Teglund A (2015) Modelling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology. Dis Model Mech 8:1413–1425
Mairpady Shambat S, Siemens N, Monk IR, Mohan DB, Mukundan S, Krishnan KC, Prabhakara S, Snall J, Kearns A, Vandenesch F, Svensson M, Kotb M, Gopal B, Arakere G, Norrby-Teglund A (2016) A point mutation in AgrC determines cytotoxic or colonizing properties associated with phenotypic variants of ST22 MRSA strains. Sci Rep 6:31360
Marks LR, Mashburn-Warren L, Federle MJ, Hakansson AP (2014) Streptococcus pyogenes biofilm growth in vitro and in vivo and its role in colonization, virulence, and genetic exchange. J Infect Dis 210:25–34
Mcdougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S (2011) Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 10:39–50
Mishalian I, Ordan M, Peled A, Maly A, Eichenbaum MB, Ravins M, Aychek T, Jung S, Hanski E (2011) Recruited macrophages control dissemination of group A Streptococcus from infected soft tissues. J Immunol 187:6022–6031
Morgan MS (2010) Diagnosis and management of necrotising fasciitis: a multiparametric approach. J Hosp Infect 75:249–257
Moses AE, Goldberg S, Korenman Z, Ravins M, Hanski E, Shapiro M, Grp I (2002) Invasive group A streptococcal infections, Israel. Emerg Infect Dis 8:421–426
Naegeli A, Bratanis E, Karlsson C, Shannon O, Kalluru R, Linder A, Malmstrom J, Collin M (2019) Streptococcus pyogenes evades adaptive immunity through specific IgG glycan hydrolysis. J Exp Med 216:1615–1629
Naseer U, Steinbakk M, Blystad H, Caugant DA (2016) Epidemiology of invasive group A streptococcal infections in Norway 2010-2014: a retrospective cohort study. Eur J Clin Microbiol Infect Dis 35:1639–1648
Nelson DC, Garbe J, Collin M (2011) Cysteine proteinase SpeB from Streptococcus pyogenes - a potent modifier of immunologically important host and bacterial proteins. Biol Chem 392:1077–1088
Nelson GE, Pondo T, Toews KA, Farley MM, Lindegren ML, Lynfield R, Aragon D, Zansky SM, Watt JP, Cieslak PR, Angeles K, Harrison LH, Petit S, Beall B, Van Beneden CA (2016) Epidemiology of invasive group A streptococcal infections in the United States, 2005-2012. Clin Infect Dis 63:478–486
Nguyen Hoang AT, Chen P, Juarez J, Sachamitr P, Billing B, Bosnjak L, Dahlen B, Coles M, Svensson M (2012) Dendritic cell functional properties in a three-dimensional tissue model of human lung mucosa. Am J Physiol Lung Cell Mol Physiol 302:L226–L237
Nilsson M, Sorensen OE, Morgelin M, Weineisen M, Sjobring U, Herwald H (2006) Activation of human polymorphonuclear neutrophils by streptolysin O from Streptococcus pyogenes leads to the release of proinflammatory mediators. Thromb Haemost 95:982–990
Nitzsche R, Kohler J, Kreikemeyer B, Oehmcke-Hecht S (2016) Streptococcus pyogenes escapes killing from extracellular histones through plasminogen binding and activation by streptokinase. J Innate Immun 8:589–600
Nizet V, Beall B, Bast DJ, Datta V, Kilburn L, Low DE, De Azavedo JC (2000) Genetic locus for streptolysin S production by group A streptococcus. Infect Immun 68:4245–4254
Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414:454–457
Norrby-Teglund A, Thulin P, Gan BS, Kotb M, Mcgeer A, Andersson J, Low DE (2001) Evidence for superantigen involvement in severe group a streptococcal tissue infections. J Infect Dis 184:853–860
Nuwayhid ZB, Aronoff DM, Mulla ZD (2007) Blunt trauma as a risk factor for group A streptococcal necrotizing fasciitis. Ann Epidemiol 17:878–881
Nyberg P, Rasmussen M, Bjorck L (2004) alpha2-macroglobulin-proteinase complexes protect Streptococcus pyogenes from killing by the antimicrobial peptide LL-37. J Biol Chem 279:52820–52823
Ogawa T, Terao Y, Okuni H, Ninomiya K, Sakata H, Ikebe K, Maeda Y, Kawabata S (2011) Biofilm formation or internalization into epithelial cells enable Streptococcus pyogenes to evade antibiotic eradication in patients with pharyngitis. Microb Pathog 51:58–68
Okada N, Pentland AP, Falk P, Caparon MG (1994) M protein and protein F act as important determinants of cell-specific tropism of Streptococcus pyogenes in skin tissue. J Clin Invest 94:965–977
Okada N, Liszewski MK, Atkinson JP, Caparon M (1995) Membrane cofactor protein (CD46) is a keratinocyte receptor for the M protein of the group A streptococcus. Proc Natl Acad Sci U S A 92:2489–2493
Olsen RJ, Musser JM (2010) Molecular pathogenesis of necrotizing fasciitis. Annu Rev Pathol 5:1–31
Pinho-Ribeiro FA, Baddal B, Haarsma R, O’Seaghdha M, Yang NJ, Blake KJ, Portley M, Verri WA, Dale JB, Wessels MR, Chiu IM (2018) Blocking neuronal signaling to immune cells treats streptococcal invasive infection. Cell 173:1083
Reglinski M, Sriskandan S, Turner CE (2019) Identification of two new core chromosome-encoded superantigens in Streptococcus pyogenes; speQ and speR. J Infect 78:358–363
Roberts AL, Connolly KL, Doern CD, Holder RC, Reid SD (2010) Loss of the group A Streptococcus regulator Srv decreases biofilm formation in vivo in an otitis media model of infection. Infect Immun 78:4800–4808
Roberts AL, Connolly KL, Kirse DJ, Evans AK, Poehling KA, Peters TR, Reid SD (2012) Detection of group A Streptococcus in tonsils from pediatric patients reveals high rate of asymptomatic streptococcal carriage. BMC Pediatr 12:3
Rohde M, Cleary PP (2016) Adhesion and invasion of Streptococcus pyogenes into host cells and clinical relevance of intracellular streptococci. In: Ferretti JJ, Stevens DL, Fischetti VA (eds) Streptococcus pyogenes: basic biology to clinical manifestations. University of Oklahoma Health Sciences Center, Oklahoma City, OK
Russell WM (1995) The development of the three Rs concept. Altern Lab Anim 23:298–304
Sanderson-Smith ML, Dinkla K, Cole JN, Cork AJ, Maamary PG, Mcarthur JD, Chhatwal GS, Walker MJ (2008) M protein-mediated plasminogen binding is essential for the virulence of an invasive Streptococcus pyogenes isolate. FASEB J 22:2715–2722
Siemens N, Patenge N, Otto J, Fiedler T, Kreikemeyer B (2011) Streptococcus pyogenes M49 plasminogen/plasmin binding facilitates keratinocyte invasion via integrin-integrin-linked kinase (ILK) pathways and protects from macrophage killing. J Biol Chem 286:21612–21622
Siemens N, Kittang BR, Chakrakodi B, Oppegaard O, Johansson L, Bruun T, Mylvaganam H, INFECT Study Group, Svensson M, Skrede S, Norrby-Teglund A (2015) Increased cytotoxicity and streptolysin O activity in group G streptococcal strains causing invasive tissue infections. Sci Rep 5:16945
Siemens N, Chakrakodi B, Shambat SM, Morgan M, Bergsten H, Hyldegaard O, Skrede S, Arnell P, Madsen MB, Johansson L, INFECT Study Group, Juarez J, Bosnjak L, Morgelin M, Svensson M, Norrby-Teglund A (2016) Biofilm in group A streptococcal necrotizing soft tissue infections. JCI Insight 1:e87882
Sims Sanyahumbi A, Colquhoun S, Wyber R, Carapetis JR (2016) Global disease burden of group a streptococcus. In: Ferretti JJ, Stevens DL, Fischetti VA (eds) Streptococcus pyogenes: basic biology to clinical manifestations. University of Oklahoma Health Sciences Center, Oklahoma City, OK
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, Van Der Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315:801–810
Skinner M (2010) Autophagy: in the hands of HMGB1. Nat Rev Mol Cell Biol 11:756–757
Snall J, Linner A, Uhlmann J, Siemens N, Ibold H, Janos M, Linder A, Kreikemeyer B, Herwald H, Johansson L, Norrby-Teglund A (2016) Differential neutrophil responses to bacterial stimuli: streptococcal strains are potent inducers of heparin-binding protein and resistin-release. Sci Rep 6:21288
Soehnlein O, Oehmcke S, Ma X, Rothfuchs AG, Frithiof R, Van Rooijen N, Morgelin M, Herwald H, Lindbom L (2008) Neutrophil degranulation mediates severe lung damage triggered by streptococcal M1 protein. Eur Respir J 32:405–412
Stamenkovic I, Lew PD (1984) Early recognition of potentially fatal necrotizing fasciitis. The use of frozen-section biopsy. N Engl J Med 310:1689–1693
Stevens DL (1999) The flesh-eating bacterium: what’s next? J Infect Dis 179(Suppl 2):S366–S374
Stevens DL, Bryant AE (2017) Necrotizing soft-tissue infections. N Engl J Med 377:2253–2265
Stevens DL, Tanner MH, Winship J, Swarts R, Ries KM, Schlievert PM, Kaplan E (1989) Severe group A streptococcal infections associated with a toxic shock-like syndrome and scarlet fever toxin Aa. N Engl J Med 321:1–7
Sumby P, Whitney AR, Graviss EA, Deleo FR, Musser JM (2006) Genome-wide analysis of group a streptococci reveals a mutation that modulates global phenotype and disease specificity. PLoS Pathog 2:e5
Sumby P, Zhang S, Whitney AR, Falugi F, Grandi G, Graviss EA, Deleo FR, Musser JM (2008) A chemokine-degrading extracellular protease made by group A Streptococcus alters pathogenesis by enhancing evasion of the innate immune response. Infect Immun 76:978–985
Sumitomo T, Nakata M, Higashino M, Jin Y, Terao Y, Fujinaga Y, Kawabata S (2011) Streptolysin S contributes to group A streptococcal translocation across an epithelial barrier. J Biol Chem 286:2750–2761
Sun H, Ringdahl U, Homeister JW, Fay WP, Engleberg NC, Yang AY, Rozek LS, Wang X, Sjobring U, Ginsburg D (2004) Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science 305:1283–1286
Sunden-Cullberg J, Norrby-Teglund A, Rouhiainen A, Rauvala H, Herman G, Tracey KJ, Lee ML, Andersson J, Tokics L, Treutiger CJ (2005) Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Crit Care Med 33:564–573
Svensson M, Chen P (2018) Novel models to study stromal cell-leukocyte interactions in health and disease. Adv Exp Med Biol 1060:131–146
Thanert R, Itzek A, Hossmann J, Hamisch D, Madsen MB, Hyldegaard O, Skrede S, Bruun T, Norrby-Teglund A, INFECT Study Group, Medina E, Pieper DH (2019) Molecular profiling of tissue biopsies reveals unique signatures associated with streptococcal necrotizing soft tissue infections. Nat Commun 10:3846
Thulin P, Johansson L, Low DE, Gan BS, Kotb M, Mcgeer A, Norrby-Teglund A (2006) Viable group A streptococci in macrophages during acute soft tissue infection. PLoS Med 3:e53
Timmer AM, Timmer JC, Pence MA, Hsu LC, Ghochani M, Frey TG, Karin M, Salvesen GS, Nizet V (2009) Streptolysin O promotes group A Streptococcus immune evasion by accelerated macrophage apoptosis. J Biol Chem 284:862–871
Uchiyama S, Andreoni F, Schuepbach RA, Nizet V, Zinkernagel AS (2012) DNase Sda1 allows invasive M1T1 group A Streptococcus to prevent TLR9-dependent recognition. PLoS Pathog 8:e1002736
Uchiyama S, Dohrmann S, Timmer AM, Dixit N, Ghochani M, Bhandari T, Timmer JC, Sprague K, Bubeck-Wardenburg J, Simon SI, Nizet V (2015) Streptolysin O rapidly impairs neutrophil oxidative burst and antibacterial responses to group A Streptococcus. Front Immunol 6:581
Uhlmann J, Rohde M, Siemens N, Kreikemeyer B, Bergman P, Johansson L, Norrby-Teglund A (2016a) LL-37 triggers formation of Streptococcus pyogenes extracellular vesicle-like structures with immune stimulatory properties. J Innate Immun 8:243–257
Uhlmann J, Siemens N, Kai-Larsen Y, Fiedler T, Bergman P, Johansson L, Norrby-Teglund A (2016b) Phosphoglycerate kinase-a novel streptococcal factor involved in neutrophil activation and degranulation. J Infect Dis 214:1876–1883
Vajjala A, Biswas D, Tay WH, Hanski E, Kline KA (2019) Streptolysin-induced endoplasmic reticulum stress promotes group A Streptococcal host-associated biofilm formation and necrotising fasciitis. Cell Microbiol 21:e12956
Valderrama JA, Nizet V (2018) Group A Streptococcus encounters with host macrophages. Future Microbiol 13:119–134
Von Pawel-Rammingen U, Johansson BP, Bjorck L (2002) IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO J 21:1607–1615
Walker MJ, Hollands A, Sanderson-Smith ML, Cole JN, Kirk JK, Henningham A, Mcarthur JD, Dinkla K, Aziz RK, Kansal RG, Simpson AJ, Buchanan JT, Chhatwal GS, Kotb M, Nizet V (2007) DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat Med 13:981–985
Westman J, Chakrakodi B, Snall J, Morgelin M, Bruun Madsen M, Hyldegaard O, Neumann A, Frick IM, Norrby-Teglund A, Bjorck L, Herwald H (2018) Protein SIC secreted from Streptococcus pyogenes forms complexes with extracellular histones that boost cytokine production. Front Immunol 9:236
Yoshino M, Murayama SY, Sunaoshi K, Wajima T, Takahashi M, Masaki J, Kurokawa I, Ubukata K (2010) Nonhemolytic Streptococcus pyogenes isolates that lack large regions of the sag operon mediating streptolysin S production. J Clin Microbiol 48:635–638
Yu CE, Ferretti JJ (1991) Frequency of the erythrogenic toxin-B and toxin-C genes (Speb and Spec) among clinical isolates of group-A Streptococci. Infect Immun 59:211–215
Zeppa JJ, Wakabayashi AT, Kasper KJ, Xu SX, Haeryfar SMM, Mccormick JK (2016) Nasopharyngeal infection of mice with Streptococcus pyogenes and in vivo detection of superantigen activity. Methods Mol Biol 1396:95–107
Zeppa JJ, Kasper KJ, Mohorovic I, Mazzuca DM, Haeryfar SMM, Mccormick JK (2017) Nasopharyngeal infection by Streptococcus pyogenes requires superantigen-responsive Vbeta-specific T cells. Proc Natl Acad Sci U S A 114:10226–10231
Zhao-Fleming HH, Wilkinson JE, Larumbe E, Dissanaike S, Rumbaugh K (2019) Obligate anaerobes are abundant in human necrotizing soft tissue infection samples - a metagenomics analysis. APMIS 127:577–587
Zhu L, Olsen RJ, Lee JD, Porter AR, Deleo FR, Musser JM (2017) Contribution of secreted NADase and streptolysin O to the pathogenesis of epidemic serotype M1 Streptococcus pyogenes infections. Am J Pathol 187:605–613
Zinkernagel AS, Timmer AM, Pence MA, Locke JB, Buchanan JT, Turner CE, Mishalian I, Sriskandan S, Hanski E, Nizet V (2008) The IL-8 protease SpyCEP/ScpC of group A Streptococcus promotes resistance to neutrophil killing. Cell Host Microbe 4:170–178
Acknowledgments
Financial support: The work was supported by the European Union Seventh Framework Programme (FP7/2007–2013) under the grant agreement 305340 (INFECT project), the Swedish Governmental Agency for Innovation Systems (VINNOVA) under the frame of NordForsk (Project no. 90456, PerAID), the Swedish Research Council under the frame of ERA PerMed (Project 2018-151, PerMIT), the German Research Foundation (DFG; grant no. 407176682), and the Federal Excellence Initiative of Mecklenburg Western Pomerania and European Social Fund (ESF) grant KoInfekt (ESF_14-BM-A55-0001_16).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Siemens, N., Snäll, J., Svensson, M., Norrby-Teglund, A. (2020). Pathogenic Mechanisms of Streptococcal Necrotizing Soft Tissue Infections. In: Norrby-Teglund, A., Svensson, M., Skrede, S. (eds) Necrotizing Soft Tissue Infections. Advances in Experimental Medicine and Biology, vol 1294. Springer, Cham. https://doi.org/10.1007/978-3-030-57616-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-57616-5_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57615-8
Online ISBN: 978-3-030-57616-5
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)