Skip to main content

Systems Biology and Biomarkers in Necrotizing Soft Tissue Infections

  • Chapter
  • First Online:
Necrotizing Soft Tissue Infections

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1294))

Abstract

In necrotizing soft tissue infection (NSTI) there is a need to identify biomarker sets that can be used for diagnosis and disease management. The INFECT study was designed to obtain such insights through the integration of patient data and results from different clinically relevant experimental models by use of systems biology approaches. This chapter describes the current state of biomarkers in NSTI and how biomarkers are categorized. We introduce the fundamentals of top-down systems biology approaches including analysis tools and we review the use of current methods and systems biology approaches to biomarker discover. Further, we discuss how different “omics” signatures (gene expression, protein, and metabolites) from NSTI patient samples can be used to identify key host and pathogen factors involved in the onset and development of infection, as well as exploring associations to disease outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Afzal M, Saccenti E, Madsen MB, Hansen MB, Hyldegaard O, Skrede S, Martins Dos Santos VAP, Norrby-Teglund A, Svensson M (2020) Integrated univariate, multivariate, and correlation-based network analyses reveal metabolite-specific effects on bacterial growth and biofilm formation in necrotizing soft tissue infections. J Proteome Res 19:688–698. https://doi.org/10.1021/acs.jproteome.9b00565

    Article  CAS  PubMed  Google Scholar 

  • Ahn AC, Tewari M, Poon C-S, Phillips RS (2006) The clinical applications of a systems approach. PLoS Med 3:e209

    Article  PubMed  PubMed Central  Google Scholar 

  • Altmaier E, Ramsay SL, Graber A, Mewes H-W, Weinberger KM, Suhre K (2008) Bioinformatics analysis of targeted metabolomics—uncovering old and new tales of diabetic mice under medication. Endocrinology 149:3478–3489

    Article  CAS  PubMed  Google Scholar 

  • Anvar MS, Minuchehr Z, Shahlaei M, Kheitan S (2018) Gastric cancer biomarkers; a systems biology approach. Biochem Biophys Rep 13:141–146

    Google Scholar 

  • Bertenshaw GP, Yip P, Seshaiah P, Zhao J, Chen T-H, Wiggins WS, Mapes JP, Mansfield BC (2008) Multianalyte profiling of serum antigens and autoimmune and infectious disease molecules to identify biomarkers dysregulated in epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 17:2872–2881

    Article  CAS  PubMed  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Bruggeman FJ, Westerhoff HV (2007) The nature of systems biology. Trends Microbiol 15:45–50

    Article  CAS  PubMed  Google Scholar 

  • Bustin SA, Nolan T (2004) Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. Jf Biomol Tech 15:155

    Google Scholar 

  • Bylesjö M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J (2006) OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Chemom 20:341–351

    Article  CAS  Google Scholar 

  • Camacho J, Saccenti E (2018) Group-wise partial least square regression. J Chemometr 32:e2964

    Article  CAS  Google Scholar 

  • Camacho D, de la Fuente A, Mendes P (2005) The origin of correlations in metabolomics data. Metabolomics 1:53–63

    Google Scholar 

  • Camacho J, Rodríguez-GÓMEZ RA, Saccenti E (2017) Group-wise principal component analysis for exploratory data analysis. J Comput Graph Stat 26:501–512

    Article  Google Scholar 

  • Camacho J, Smilde AK, Saccenti E, Westerhuis JA (2020) All sparse PCA models are wrong, but some are useful. Part I: computation of scores, residuals and explained variance. Chemom Intel Lab Syst 196:103907

    Article  CAS  Google Scholar 

  • Carter S, Brechbuhler C, Griffin M, Bond A (2004) Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20:2242–2250

    Article  CAS  PubMed  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297

    Google Scholar 

  • Cross D, Drury RE, Hill JL, Pollard AJ (2019) Epigenetics in sepsis: understanding its role in endothelial dysfunction, immunosuppression and potential therapeutics. Front Immunol 10:1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Sain-Van Der Velden MGM, Rinaldo P, Elvers B, Henderson M, Walter JH, Prinsen BHCMT, Verhoeven-Duif NM, DE Koning TJ, van Hasselt P (2012) The Proline/Citrulline ratio as a biomarker for OAT deficiency in early infancy. JIMD Rep 6:95–99

    Google Scholar 

  • Del Campo M, Jongbloed W, Twaalfhoven HA, Veerhuis R, Blankenstein MA, Teunissen CE (2015) Facilitating the validation of novel protein biomarkers for dementia: an optimal workflow for the development of sandwich immunoassays. Front Neurol 6:202

    Google Scholar 

  • Drucker E, Krapfenbauer K (2013) Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine. EPMA J 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. Trends Anal Chem 24:285–294

    Article  CAS  Google Scholar 

  • Eckerle M, Ambroggio L, Puskarich MA, Winston B, Jones AE, Standiford TJ, Stringer KA (2017) Metabolomics as a driver in advancing precision medicine in sepsis. Pharmacotherapy 37:1023–1032

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards RJ, Pyzio M, Gierula M, Turner CE, Abdul-Salam VB, Sriskandan S (2018) Proteomic analysis at the sites of clinical infection with invasive Streptococcus pyogenes. Sci Rep 8:5950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Emmert-Streib F, Dehmer M, Haibe-Kains B (2014) Gene regulatory networks and their applications: understanding biological and medical problems in terms of networks. Front Cell Dev Biol 2:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Feala JD, Abdulhameed MDM, Yu C, Dutta B, Yu X, Schmid K, Dave J, Tortella F, Reifman J (2013) Systems biology approaches for discovering biomarkers for traumatic brain injury. J Neurotrauma 30:1101–1116

    Article  PubMed  PubMed Central  Google Scholar 

  • Goossens N, Nakagawa S, Sun X, Hoshida Y (2015) Cancer biomarker discovery and validation. Transl Cancer Res 4(3):256–269

    CAS  PubMed  Google Scholar 

  • Hajar R (2016) Evolution of myocardial infarction and its biomarkers: a historical perspective. Heart Views 17:167

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen MB, Rasmussen LS, Garred P, Bidstrup D, Madsen MB, Hyldegaard O (2016a) Pentraxin-3 as a marker of disease severity and risk of death in patients with necrotizing soft tissue infections: a nationwide, prospective, observational study. Crit Care 20:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen MB, Rasmussen LS, Pilely K, Hellemann D, Hein E, Madsen MB, Hyldegaard O, Garred P (2016b) The lectin complement pathway in patients with necrotizing soft tissue infection. J Innate Immun 8:507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen MB, Rasmussen LS, Svensson M, Chakrakodi B, Bruun T, Madsen MB, Perner A, Garred P, Hyldegaard O, Norrby-Teglund A, INFECT Study Group (2017a) Association between cytokine response, the LRINEC score and outcome in patients with necrotising soft tissue infection: a multicentre, prospective study. Sci Rep 7:42179–42179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen MB, Rasmussen LS, Svensson M, Chakrakodi B, Bruun T, Madsen MB, Perner A, Garred P, Hyldegaard O, Norrby-Teglund A, INFECT Study GROUP, Nekludov M, Arnell P, Rosén A, Oscarsson N, Karlsson Y, Oppegaard O, Skrede S, Itzek A, Wahl AM, Hedetoft M, Bærnthsen NF, Müller R, Nedrebø T (2017b) Association between cytokine response, the LRINEC score and outcome in patients with necrotising soft tissue infection: a multicentre, prospective study. Sci Rep 7:42179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen MB, Rasmussen LS, Garred P, Pilely K, Wahl AM, Perner A, Madsen MB, Hedegaard ER, Simonsen U, Hyldegaard O (2018) Associations of plasma nitrite, L-arginine and asymmetric Dimethylarginine with morbidity and mortality in patients with necrotizing soft tissue infections. Shock 49:667–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honore PM, Spapen HD (2016) Pentraxin-3 to better delineate necrotizing soft tissue infection: not really! Crit Care 20:173

    Article  PubMed  PubMed Central  Google Scholar 

  • Hotelling H (1931) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417441

    Google Scholar 

  • Hsia DYY (1958) Phenylketonuria: the phenylalanine-tyrosine ratio in the detection of the heterozygous carrier. J Ment Defic Res 2:8–16

    CAS  PubMed  Google Scholar 

  • Ideker T, Krogan NJ (2012) Differential network biology. Mol Syst Biol 8:565

    Article  PubMed  PubMed Central  Google Scholar 

  • Ioannidis JP, Panagiotou OA (2011) Comparison of effect sizes associated with biomarkers reported in highly cited individual articles and in subsequent meta-analyses. JAMA 305:2200–2210

    Article  CAS  PubMed  Google Scholar 

  • Jeong H, Mason S, Barabasi A, Oltvai Z (2001) Lethality and centrality in protein networks. Nature 411:41–42

    Article  CAS  PubMed  Google Scholar 

  • Jolliffe IT (2002) Principal component analysis. Wiley, London

    Google Scholar 

  • Jordán F, Nguyen T-P, Liu W-C (2012) Studying protein–protein interaction networks: a systems view on diseases. Brief Funct Genomics 11:497–504

    Article  PubMed  CAS  Google Scholar 

  • Karakitsou E, Foguet C, de Atauri P, Kultima K, Khoonsari PE, Martins Dos Santos VAP, Saccenti E, Rosato A, Cascante M (2019) Metabolomics in systems medicine: an overview of methods and applications. Curr Opin Syst Biol 15:91–99

    Google Scholar 

  • Kell DB (2004) Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol 7:296–307

    Article  CAS  PubMed  Google Scholar 

  • Kotb M, Norrby-Teglund A, Mcgeer A, El-Sherbini H, Dorak MT, Khurshid A, Green K, Peeples J, Wade J, Thomson G (2002) An immunogenetic and molecular basis for differences in outcomes of invasive group A streptococcal infections. Nat Med 8:1398

    Google Scholar 

  • Kotb M, Norrby-Teglund A, Mcgeer A, Green K, Low D (2003) Association of human leukocyte antigen with outcomes of infectious diseases: the streptococcal experience. Scand J Infect Dis 35:665–669

    Article  CAS  PubMed  Google Scholar 

  • Lê Cao K-A, Rossouw D, Robert-Granié C, Besse P (2008) A sparse PLS for variable selection when integrating omics data. Stat Appl Genet Mol Biol 7:1

    Article  Google Scholar 

  • Le Gall J-R, Lemeshow S, Saulnier F (1993) A new simplified acute physiology score (SAPS II) based on a European/north American multicenter study. JAMA 270:2957–2963

    Google Scholar 

  • Madsen MB, Skrede S, Bruun T, Arnell P, Rosén A, Nekludov M, Karlsson Y, Bergey F, Saccenti E, Martins Dos Santos VAP, Perner A, Norrby-Teglund A, Hyldegaard O (2018) Necrotizing soft tissue infections—a multicentre, prospective observational study (INFECT): protocol and statistical analysis plan. Acta Anaesthesiol Scand 62:272–279

    Article  CAS  PubMed  Google Scholar 

  • Madsen MB, Skrede S, Perner A, Arnell P, Nekludov M, Bruun T, Karlsson Y, Hansen MB, Polzik P, Hedetoft M (2019) Patient’s characteristics and outcomes in necrotising soft-tissue infections: results from a Scandinavian, multicentre, prospective cohort study. Intensive Care Med 45:1241–1251

    Article  CAS  PubMed  Google Scholar 

  • Mehta S, Shelling A, Muthukaruppan A, Lasham A, Blenkiron C, Laking G, Print C (2010) Predictive and prognostic molecular markers for cancer medicine. Therapeut Adv Med Oncol 2:125–148

    Article  CAS  Google Scholar 

  • Mor G, Visintin I, Lai Y, Zhao H, Schwartz P, Rutherford T, Yue L, Bray-Ward P, Ward DC (2005) Serum protein markers for early detection of ovarian cancer. Proc Natl Acad Sci U S A 102:7677–7682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norrby-Teglund A, Kotb M (2000) Host-microbe interactions in the pathogenesis of invasive group A streptococcal infections. J Med Microbiol 49:849

    Article  Google Scholar 

  • Norrby-Teglund A, Chatellier S, Low DE, Mcgeer A, Green K, Kotb M (2000) Host variation in cytokine responses to superantigens determine the severity of invasive group A streptococcal infection. Eur J Immunol 30:3247–3255

    Article  CAS  PubMed  Google Scholar 

  • Oltvai ZN, Barabási A-L (2002) Life’s complexity pyramid. Science 298:763–764

    Article  CAS  PubMed  Google Scholar 

  • Pearson K (1901) On lines and planes of closest fit to systems of points in space. London, Edinburgh, Dublin Philos Mag J Sci 2:559–572

    Article  Google Scholar 

  • Petersen A-K, Krumsiek J, Wägele B, Theis FJ, Wichmann H-E, Gieger C, Suhre K (2012) On the hypothesis-free testing of metabolite ratios in genome-wide and metabolome-wide association studies. BMC Bioinfo 13:120

    Article  Google Scholar 

  • Picotti P, Aebersold R (2012) Selected reaction monitoring–based proteomics: workflows, potential, pitfalls and future directions. Nat Method 9:555

    Article  CAS  Google Scholar 

  • Quezada H, Guzmán-Ortiz AL, Díaz-Sánchez H, Valle-Rios R, Aguirre-Hernández J (2017) Omics-based biomarkers: current status and potential use in the clinic. Bol Med Hosp Infant Mex 74:219–226

    PubMed  Google Scholar 

  • Rosato A, Tenori L, Cascante M, de Atauri Carulla PR, Martins Dos Santos VAP, Saccenti E (2018) From correlation to causation: analysis of metabolomics data using systems biology approaches. Metabolomics 14:37

    Google Scholar 

  • Saccenti E, Hoefsloot HC, Smilde AK, Westerhuis JA, Hendriks MM (2014a) Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics 10:361–374

    Google Scholar 

  • Saccenti E, Suarez-Diez M, Luchinat C, Santucci C, Tenori L (2014b) Probabilistic networks of blood metabolites in healthy subjects as indicators of latent cardiovascular risk. J Proteome Res 14:1101–1111

    Article  PubMed  CAS  Google Scholar 

  • Saccenti E, Smilde AK, Camacho J (2018) Group-wise ANOVA simultaneous component analysis for designed omics experiments. Metabolomics 14:73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwartz S, Kightlinger E, de Virgilio C, de Virgilio M, Kaji A, Neville A, Bennion R (2013) Predictors of mortality and limb loss in necrotizing soft tissue infections. Am Surg 79:1102–1105

    Google Scholar 

  • Shahzad K, Loor JJ (2012) Application of top-down and bottom-up systems approaches in ruminant physiology and metabolism. Curr Genomics 13:379–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon R (2011) Genomic biomarkers in predictive medicine. An interim analysis. EMBO Mol Med 3:429–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon R (2014) Biomarker based clinical trial design. Chin Clin Oncol 3:3

    Google Scholar 

  • Staaf J, Glodzik D, Bosch A et al (2019) Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study. Nat Med 25:1526–1533. https://doi.org/10.1038/s41591-019-0582-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens DL, Bryant AE (2017) Necrotizing soft-tissue infections. N Engl J Med 377:2253–2265

    Article  PubMed  Google Scholar 

  • Sung J, Wang Y, Chandrasekaran S, Witten DM, Price ND (2012) Molecular signatures from omics data: from chaos to consensus. Biotechnol J 7:946–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thänert R, Itzek A, Hoßmann J, Hamisch D, Madsen MB, Hyldegaard O, Skrede S, Bruun T, Norrby-Teglund A, Medina E (2019) Molecular profiling of tissue biopsies reveals unique signatures associated with streptococcal necrotizing soft tissue infections. Nat Commun 10:1–15

    Article  CAS  Google Scholar 

  • Vafaee F, Diakos C, Kirschner MB, Reid G, Michael MZ, Horvath LG, Alinejad-Rokny H, Cheng ZJ, Kuncic Z, clarke S (2018) A data-driven, knowledge-based approach to biomarker discovery: application to circulating microRNA markers of colorectal cancer prognosis. NPJ Syst Biol Appl 4:1–12

    Article  Google Scholar 

  • Van ’T Veer LJ, Dai H, Van de Vijver MJ, He YD, Hart AAM, Mao M, Peterse HL, Van Der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Google Scholar 

  • Van de Vijver MJ, He YD, Van ’T Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Google Scholar 

  • Vignoli A, Tenori L, Luchinat C, Saccenti E (2018) Age and sex effects on plasma metabolite association networks in healthy subjects. J Proteome Res 17:97–107

    Article  CAS  PubMed  Google Scholar 

  • Vignoli A, Tenori L, Giusti B, Valente S, Carrabba N, Balzi D, Barchielli A, Marchionni N, Gensini GF, Marcucci R, Gori AM, Luchinat C, Saccenti E (2020) Differential network analysis reveals metabolic determinants associated with mortality in acute myocardial infarction patients and suggests potential mechanisms underlying different clinical scores used to predict death. J Proteome Res 19:949–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villoslada P, Baranzini S (2012) Data integration and systems biology approaches for biomarker discovery: challenges and opportunities for multiple sclerosis. J Neuroimmunol 248:58–65

    Article  CAS  PubMed  Google Scholar 

  • Vincent JL, Moreno R, Takala J, Willatts S, de Mendonça A, Bruining H, Reinhart CK, Suter PM, Thijs LG (1996) The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European Society of Intensive Care Medicine. Intensive Care Med 22:707–710

    Google Scholar 

  • Wiśniewski JR, Mann M (2012) Consecutive proteolytic digestion in an enzyme reactor increases depth of proteomic and phosphoproteomic analysis. Anal Chem 84:2631–2637

    Article  PubMed  CAS  Google Scholar 

  • Wold S, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130

    Article  CAS  Google Scholar 

  • Wong C-H, Khin L-W, Heng K-S, Tan K-C, Low C-O (2004) The LRINEC (laboratory risk indicator for necrotizing fasciitis) score: a tool for distinguishing necrotizing fasciitis from other soft tissue infections. Crit Care Med 32:1535–1541

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

Financial support: The work was supported by the European Union Seventh Framework Programme: (FP7/2007-2013) under the grant agreement 305340 (INFECT project); the Swedish Governmental Agency for Innovation Systems (VINNOVA) under the frame of NordForsk (Project no. 90456, PerAID), and the Swedish Research Council and The Netherlands Organization for Health Research and Development (ZonMv) under the frame of ERA PerMed (Project 2018-151, PerMIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Saccenti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saccenti, E., Svensson, M. (2020). Systems Biology and Biomarkers in Necrotizing Soft Tissue Infections. In: Norrby-Teglund, A., Svensson, M., Skrede, S. (eds) Necrotizing Soft Tissue Infections. Advances in Experimental Medicine and Biology, vol 1294. Springer, Cham. https://doi.org/10.1007/978-3-030-57616-5_11

Download citation

Publish with us

Policies and ethics