Skip to main content

Polyhedral Circuits and Their Applications

  • Conference paper
  • First Online:
Algorithmic Aspects in Information and Management (AAIM 2020)

Abstract

To better compute the volume and count the lattice points in geometric objects, we propose polyhedral circuits. Each polyhedral circuit characterizes a geometric region in \(\mathbb {R}^d\). They can be applied to represent a rich class of geometric objects, which include all polyhedra and the union of a finite number of polyhedron. They can be also used to approximate a large class of d-dimensional manifolds in \(\mathbb {R}^d\). Barvinok  [3] developed polynomial time algorithms to compute the volume of a rational polyhedron, and to count the number of lattice points in a rational polyhedron in \(\mathbb {R}^d\) with a fixed dimensional number d. Let d be a fixed dimensional number, \(T_V(d,\, n)\) be polynomial time in n to compute the volume of a rational polyhedron, \(T_L(d,\, n)\) be polynomial time in n to count the number of lattice points in a rational polyhedron, where n is the total number of linear inequalities from input polyhedra, and \(T_I(d,\, n)\) be polynomial time in n to solve integer linear programming problem with n be the total number of input linear inequalities. We develop algorithms to count the number of lattice points in geometric region determined by a polyhedral circuit in \(O\,\left( nd\cdot r_d(n)\cdot T_V(d,\, n)\right) \) time and to compute the volume of geometric region determined by a polyhedral circuit in \(O\,\left( n\cdot r_d(n)\cdot T_I(d,\, n)+r_d(n)T_L(d,\, n)\right) \) time, where \(r_d(n)\) is the maximum number of atomic regions that n hyperplanes partition \(\mathbb {R}^d\). The applications to continuous polyhedra maximum coverage problem, polyhedra maximum lattice coverage problem, polyhedra \(\left( 1-\beta \right) \)-lattice set cover problem, and \(\left( 1-\beta \right) \)-continuous polyhedra set cover problem are discussed. We also show the NP-hardness of the geometric version of maximum coverage problem and set cover problem when each set is represented as union of polyhedra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allgower, E.L., Schmidt, P.H.: Computing volumes of polyhedra. Math. Comput. 46(173), 171–174 (1986)

    Article  MathSciNet  Google Scholar 

  2. Baldoni-Silva, W., Vergne, M.: Residues formulae for volumes and ehrhart polynomials of convex polytopes. arXiv preprint math/0103097 (2001)

    Google Scholar 

  3. Barvinok, A.I.: Computing the volume, counting integral points, and exponential sums. Discrete Comput. Geom. 10(2), 123–141 (1993). https://doi.org/10.1007/BF02573970

    Article  MathSciNet  MATH  Google Scholar 

  4. Barvinok, A.I.: A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. Oper. Res. 19(4), 769–779 (1994)

    Article  MathSciNet  Google Scholar 

  5. Beck, M.: Counting lattice points by means of the residue theorem. Ramanujan J. 4(3), 299–310 (2000)

    Article  MathSciNet  Google Scholar 

  6. Beck, M., Pixton, D.: The ehrhart polynomial of the birkhoff polytope. Discrete Comput. Geom. 30(4), 623–637 (2003)

    Article  MathSciNet  Google Scholar 

  7. Brion, M.: Points entiers dans les polyedres convexes. Ann. Sci. l’Ecole Norm. Super. 21, 653–663 (1988)

    Article  MathSciNet  Google Scholar 

  8. Brion, M.: Polyedres et réseaux. Enseign. Math. 38, 71–88 (1992)

    MathSciNet  MATH  Google Scholar 

  9. Clarkson, K.L.: Las vegas algorithms for linear and integer programming when the dimension is small. J. ACM (JACM) 42(2), 488–499 (1995)

    Article  MathSciNet  Google Scholar 

  10. Roberts, S.: On the figures formed by the intercepts of a system of straight lines in a, plane, and on analogous relations in space of three dimensions. Proc. Lon. Math. Soc. 1(1), 405–422 (1887)

    Article  MathSciNet  Google Scholar 

  11. Cohen, J., Hickey, T.: Two algorithms for determining volumes of convex polyhedra. J. ACM (JACM) 26(3), 401–414 (1979)

    Article  MathSciNet  Google Scholar 

  12. De Loera, J.A., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point counting in rational convex polytopes. J. Symb. Comput. 38(4), 1273–1302 (2004)

    Article  MathSciNet  Google Scholar 

  13. Dyer, M.: On counting lattice points in polyhedra. SIAM J. Comput. 20(4), 695–707 (1991)

    Article  MathSciNet  Google Scholar 

  14. Dyer, M., Kannan, R.: On barvinok’s algorithm for counting lattice points in fixed dimension. Math. Oper. Res. 22(3), 545–549 (1997)

    Article  MathSciNet  Google Scholar 

  15. Dyer, M.E., Frieze, A.M.: On the complexity of computing the volume of a polyhedron. SIAM J. Comput. 17(5), 967–974 (1988)

    Article  MathSciNet  Google Scholar 

  16. Erhart, E.: Sur un probleme de géométrie diophantienne linéaire. I. IJ Reine Angew. Math 226, 1–29 (1967)

    Google Scholar 

  17. Heintz, J., Roy, M.-F., Solern, P.: On the complexity of semialgebraic sets. In: Proceedings of the IFIP San Francisco, pp. 293–298 (1989)

    Google Scholar 

  18. Feige, U.: A threshold of ln n for approximating set cover. J. ACM (JACM) 45(4), 634–652 (1998)

    Article  Google Scholar 

  19. Leonid Genrikhovich Khachiyan: The problem of calculating the volume of a polyhedron is enumerably hard. Russ. Math. Surv. 44(3), 199 (1989)

    Article  Google Scholar 

  20. Lasserre, J.B.: An analytical expression and an algorithm for the volume of a convex polyhedron in \(R^n\). J. Optim. Theor. Appl. 39(3), 363–377 (1983)

    Article  MathSciNet  Google Scholar 

  21. Wetzel, J.E.: On the division of the plane by lines. Am. Math. Mon. 85(8), 647–656 (1978)

    Article  MathSciNet  Google Scholar 

  22. Lasserre, J.B., Zeron, E.S.: Solving the knapsack problem via z-transform. Oper. Res. Lett. 30(6), 394–400 (2002)

    Article  MathSciNet  Google Scholar 

  23. Lawrence, J.: Polytope volume computation. Math. Comput. 57(195), 259–271 (1991)

    Article  MathSciNet  Google Scholar 

  24. Steiner, J.: Einige gesetze über die theilung der ebene und des raumes. Journal für die reine und angewandte Mathematik 1826(1), 349–364 (1826)

    Article  Google Scholar 

  25. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)

    Article  MathSciNet  Google Scholar 

  26. MacMahon, P.A.: Combinatorial Analysis. Chelsea, New York (1960). 1915

    MATH  Google Scholar 

  27. Pemantle, R., Wilson, M.C.: Asymptotics of multivariate sequences: I. Smooth points of the singular variety. J. Comb. Theor. Ser. A 97(1), 129–161 (2002)

    Article  MathSciNet  Google Scholar 

  28. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998)

    MATH  Google Scholar 

  29. Stanley, R.P.: Cambridge studies in advanced mathematics (1997)

    Google Scholar 

  30. Von Hohenbalken, B.: Finding simplicial subdivisions of polytopes. Math. Program. 21(1), 233–234 (1981)

    Article  MathSciNet  Google Scholar 

  31. Agarwal, P.K., Sharir, M.: Arrangements and their applications. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 49–119. North-Holland, Amsterdam (2000)

    Chapter  Google Scholar 

  32. Robert Creighton Buck: Partition of space. Am. Math. Monthly 50(9), 541–544 (1943)

    Article  MathSciNet  Google Scholar 

  33. Warren, H.E.: Lower bound for approximation by nonlinear manifolds. Trans. Amer. Math. Soc. 133, 167–178 (1968)

    Article  MathSciNet  Google Scholar 

  34. Grünbaum, B.: Arrangements of hyperplanes. In: Kaibel, V., Klee, V., Ziegler, G.M. (eds.) Convex Polytopes, vol. 221, pp. 432–454. Springer, New York (2003)

    Chapter  Google Scholar 

  35. Pollack, R., Roy, M.F.: On the number of cells defined by a set of polynomials. C. R. Acad. Sci. Paris 316, 573–577 (1993)

    MathSciNet  MATH  Google Scholar 

  36. Zaslavsky, T.: Facing up to arrangements: Face-count formulas for partitions of space by hyperplanes. Mem. Am. Math. Soc. 154, 1–95 (1977)

    Google Scholar 

  37. Alexanderson, G.L., Wetzel, J.E.: Arrangements of planes in space. Discrete Math. 34(3), 219–240 (1981)

    Article  MathSciNet  Google Scholar 

  38. Edelsbrunner, H., O’Rourke, J., Seidel, R.: Constructing arrangements of lines and hyperplanes with applications. SIAM J. Comput. 15(2), 341–363 (1986)

    Article  MathSciNet  Google Scholar 

  39. Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry, II. Discrete Comput. Geom. 4(5), 387–421 (1989). https://doi.org/10.1007/BF02187740

    Article  MathSciNet  MATH  Google Scholar 

  40. Balaban, I.J.: An optimal algorithm for finding segments intersections. In: Proceedings of the Eleventh Annual Symposium on Computational Geometry, pp. 211–219 (1995)

    Google Scholar 

  41. Chazelle, B., Edelsbrunner, H.: An optimal algorithm for intersecting line segments in the plane. J. ACM (JACM) 39(1), 1–54 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This research is supported in part by National Science Foundation Early Career Award 0845376, Bensten Fellowship of the University of Texas Rio Grande Valley, and National Natural Science Foundation of China 61772179.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, B., Gu, P., Zhao, Y. (2020). Polyhedral Circuits and Their Applications. In: Zhang, Z., Li, W., Du, DZ. (eds) Algorithmic Aspects in Information and Management. AAIM 2020. Lecture Notes in Computer Science(), vol 12290. Springer, Cham. https://doi.org/10.1007/978-3-030-57602-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57602-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57601-1

  • Online ISBN: 978-3-030-57602-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics