Skip to main content

The VLS Mechanism

  • Chapter
  • First Online:
Synthesis of Nanomaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 307))

Abstract

Vapor–liquid–solid (VLS) growth mechanism for the growths of one-dimensional and quasi-two-dimensional nanomaterials has been reviewed in some details. The historical background of the VLS mechanism has first been presented. The most important requirements of the VLS mechanism to be effective for growths have then been laid down. Eutectic phase has also been described. Various elements of this phase such as the formation of droplets, incubation time, thermodynamic and kinetic conditions for incubation, supersaturation, nucleation and growth, binary phases and diagrams of binary phases, and the critical elements pertaining to the formation of droplets have then been elaborated. FECA metal selection and the possible means to perform this selection have been narrated. Growth dynamics and the temperature dependency of this growth have been discussed. While examining the failures of the VLS mechanism for nanomaterial growths, important observations pertaining to silicon nanowire growth rate as function of growth parameters, InAs nanowire growth rate as function of growth parameters, and the lack of atomic-scale control over growths by the VLS mechanism have been depicted. While examining the failure of the VLS mechanism in mediating the carbon nanotube growths, location, shape, and size of the catalyst particle during these growths, crystallographic relationship during growths, nanoparticle conditions during growths, and the presumed stages of growths have been chronicled. Finally, various criteria for the VLS growths have been documented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–91 (1964)

    Article  CAS  Google Scholar 

  2. S.N. Mohammad, Analysis of the vapor-liquid-solid mechanism for nanowire growth and a model for this mechanism. Nano Lett. 8, 1532–1538 (2008)

    Article  CAS  Google Scholar 

  3. D. Wang, Y.-L. Chang, Q. Wang, J. Cao, D.B. Farmer, R.G. Gordon, H. Dai, Surface chemistry and electrical properties of germanium nanowires. J. Am. Chem. Soc. 126, 11602–11611 (2004)

    Article  CAS  Google Scholar 

  4. Y. Kim, H.J. Joyce, Q. Gao, H.H. Tan, C. Jagadish, M. Paladugu, J. Zou, A.A. Suvoroval, Influence of nanowire density on the shape and optical properties of ternary InGaAs nanowires. Nano Lett. 6, 599–604 (2006)

    Article  CAS  Google Scholar 

  5. V. Schmidt, J.V. Wittemann, U. Gösele, Growth, thermodynamics, and electrical properties of silicon nanowires. Chem. Rev. 110, 361–388 (2010)

    Article  CAS  Google Scholar 

  6. K.A. Dick, A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au-assisted III-V nanowires. Prog. Crystal Growth Character. Mater. 54, 138–173 (2008)

    Article  CAS  Google Scholar 

  7. B. Ressel, K.C. Prince, S. Heun, Wetting of Si surfaces by Au-Si liquid alloys. J. Appl. Phys. 93, 3886–3892 (2003)

    Article  CAS  Google Scholar 

  8. H. Detz, M. Kriz, D. MacFarland, S. Lancaster, T. Zederbauer, M. Capriotti, A.M. Andrews, W. Schrenk, G. Strasser, Nucleation of Ga droplets on Si and SiOx surfaces. Nanotechnology 26, 315601 (2015)

    Article  CAS  Google Scholar 

  9. B. Kalache, P.R. Cabarrocas, A.F. Morral, Observation of incubation times in the nucleation of silicon nanowires obtained by the vapor–liquid–solid method. Jpn. J. Appl. Phys. 45(7), L190–L193 (2006)

    Article  CAS  Google Scholar 

  10. T.B. Massalski (ed.), Binary Alloy Phase Diagrams, vol. 3, 2nd edn. (American Society of Metals, Metals Park, OH, 1986)

    Google Scholar 

  11. T.I. Kamins, R.S. Williams, Y. Chen, Y.-L. Chang, Y.A. Chang, Chemical vapor deposition of Si nanowires nucleated by TiSi2 islands on Si. Appl. Phys. Lett. 76, 562 (2000)

    Article  CAS  Google Scholar 

  12. F. Iacopi, P.M. Vereecken, M. Schaekers, M. Caymax, N. Moelans, B. Blanpain, C. Detavernier, J. D’Haen, F. Griffiths, Materials Research Society Symposium Proceedings, vol. 1017 (2007), pp. 1017-DD01-10-EE01-10

    Google Scholar 

  13. P. Nguyen, H.T. Ng, M. Meyyappan, Catalyst metal selection for synthesis of inorganic nanowire. Adv. Mater. 17, 1773–1777 (2005)

    Article  CAS  Google Scholar 

  14. R.S. Wagner, Whisker Technology (Wiley, New York, 1970)

    Google Scholar 

  15. J. Kikkawa, Y. Ohno, S. Takeda, Growth rate of silicon nanowires. Appl. Phys. Lett. 86, 123109 (2005)

    Article  CAS  Google Scholar 

  16. S. Hofmann, C. Ducati, R.J. Neill, S. Piscanec, A.C. Ferrari, J. Geng, R.E. Dunin-Borkowski, J. Robertson, Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition. J. Appl. Phys. 94, 6005–6012 (2003)

    Article  CAS  Google Scholar 

  17. J. Albuschies, M. Baus, O. Winkler, B. Hadam, B. Spangenberg, H. Kurtz, High-density silicon nanowire growth from self-assembled Au nanoparticle. Microelectron. Eng. B 83, 1530–1533 (2006)

    Article  CAS  Google Scholar 

  18. J. Westwater, D.P. Gossain, S. Tomiya, S. Usui, H. Ruda, Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction. J. Vac. Sci. Technol. B 15, 554–557 (1997)

    Article  CAS  Google Scholar 

  19. S.H. Chung, S. Ramadurgam, C. Yang, Effect of dopants on epitaxial growth of silicon nanowires. Nanomater. Nanotechnol. 4, 1–6 (2014)

    Article  CAS  Google Scholar 

  20. K.K. Lew, C. Reuther, A.H. Carim, J.M. Redwing, B.R. Martin, Template-directed vapor-liquid-solid growth of silicon nanowires. J. Vac. Sci. Technol. B 20, 389–392 (2002)

    Google Scholar 

  21. O. Gunawan, S. Guha, Characteristics of vapor-liquid-solid grown silicon nanowire solar cells. Solar Energy Mater. Solar Cells 93, 1388–1393 (2009)

    Article  CAS  Google Scholar 

  22. J.B. Hannon, S. Kodambaka, F.M. Ross, R.M. Tromp, The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69–71 (2006)

    Article  CAS  Google Scholar 

  23. S. Sharma, T.I. Kamins, R.S. Williams, Synthesis of thin silicon nanowires using gold-catalyzed chemical vapor deposition. Appl. Phys. A 80, 1225–1229 (2005)

    Article  CAS  Google Scholar 

  24. M. Tchernycheva, J.C. Harmand, G. Patriarche, L. Travers, G. Cirlin, Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy. Nanotechnology 17, 4025 (2006)

    Article  CAS  Google Scholar 

  25. H. Huang, X. Ren, X. Ye, J. Guo, Q. Wang, Y. Yang, S. Cai, Y. Huang, Growth of stacking-faults-free zinc blende GaAs nanowires on Si substrate by using AlGaAs/GaAs buffer layers. Nano Lett. 10, 64–68 (2010)

    Article  CAS  Google Scholar 

  26. H. Shtrikman, R. Popovitz-Biro, A. Kretinin, M. Heiblum, Stacking-faults-free zinc blende GaAs nanowires. Nano Lett. 9, 215–219 (2009)

    Article  CAS  Google Scholar 

  27. S.-G. Ihn, J.-I. Song, T.-W. Kim, D.-S. Leem, T. Lee, S.-G. Lee, E.K. Koh, K. Song, Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates. Nano Lett. 7, 39–44 (2007)

    Article  CAS  Google Scholar 

  28. S.A. Fortuna, J. Wen, I.S. Chun, X. Li, Planar, GaAs nanowires on GaAs (100) substrates: self-aligned, nearly twin-defect free, and transfer-printable. Nano Lett. 8, 4421–4427 (2008)

    Article  CAS  Google Scholar 

  29. C. Soci, X.-Y. Bao, D.P.R. Aplin, D. Wang, A systematic study on the growth of GaAs nanowires by metal-organic chemical vapor deposition. Nano Lett. 8, 4275–4282 (2008)

    Article  CAS  Google Scholar 

  30. J.-C. Harmand, G. Patriarche, N. Péré-Laperne, M.-N. Mérat-Combes, L. Travers, F. Glas, Analysis of vapor-liquid-solid mechanism for Au-assisted GaAs nanowire growth. Appl. Phys. Lett. 87, 203101–203103 (2005)

    Article  CAS  Google Scholar 

  31. J.D. Christesen, C.W. Pinion, X. Zhang, J.R. McBride, J.F. Cahoon, Encoding abrupt and uniform dopant profiles in vapor-liquid-solid nanowires by suppressing the reservoir effect of the liquid catalyst. ACS Nano 8(11), 11790–11798 (2014)

    Article  CAS  Google Scholar 

  32. C.W. Pinion, Understanding the vapor-liquid-solid and vapor-solid-solid mechanisms of Si nanowire growth to synthetically encode precise nanoscale morphology. Doctoral thesis, University of North Carolina, Chapel Hill (2017)

    Google Scholar 

  33. H. Wang, C.N. Fischman, Role of liquid droplet surface diffusion in the vapor-liquid-solid whisker growth mechanism. J. Appl. Phys. 76, 1557 (1994)

    Article  CAS  Google Scholar 

  34. H. Adhikari, A.F. Marshall, C.E.D. Chidsey, P.C. McIntyre, Germanium nanowire epitaxy: shape and orientation control. Nano Lett. 6, 318–323 (2006)

    Article  CAS  Google Scholar 

  35. Y.W. Wang, V. Schmidt, S. Senz, U. Gösele, Epitaxial growth of silicon nanowires using an aluminum catalyst. Nat. Nanotechnol. 1, 186–189 (2006)

    Article  CAS  Google Scholar 

  36. Y. Wang, X. Zhou, Z. Yang, F. Wang, N. Han, Y. Chen, J.C. Ho, GaAs nanowires grown by catalyst epitaxy for high performance photovoltaics. Crystals 8, 347 (2018)

    Article  CAS  Google Scholar 

  37. F.J. Sheini, D.S. Joag, M.A. More, J. Singh, O.N. Srivasatva, Low temperature growth of aligned ZnO nanowires and their application as field emission cathodes. Mater. Chem. Phys. 120, 691–696 (2010)

    Article  CAS  Google Scholar 

  38. Y. Wu, P. Yang, Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 123, 3165–3166 (2001)

    Article  CAS  Google Scholar 

  39. K. Dick, T. Dhanasekaran, Z. Zhang, D. Meisel, Size-dependent melting of silica-encapsulated gold nanoparticles. J. Am. Chem. Soc. 124, 2312–2317 (2002)

    Article  CAS  Google Scholar 

  40. E. Sutter, P. Sutter, Phase diagram of nanoscale alloy particles used for vapor–liquid–solid growth of semiconductor nanowires. Nano Lett. 8, 411–414 (2008)

    Article  CAS  Google Scholar 

  41. F. Gao, Z. Gu, Melting temperature of metallic nanoparticles, in Handbook of Nanoparticles, ed. by M. Aliofkhazraei (Springer, Cham, 2016), pp. 661–690

    Google Scholar 

  42. S.A. Dayeh, E.T. Yu, D. Wang, III–V nanowire growth mechanism: V/III ratio and temperature effects. Nano Lett. 7(8), 2486–2490 (2007)

    Article  CAS  Google Scholar 

  43. H.J. Joyce, J. Wong-Leung, Q. Gao, H.H. Tan, C. Jagadish, Phase perfection in zinc blende and wurtzite III-V nanowires using basic growth parameters. Nano Lett. 10, 908–915 (2010)

    Article  CAS  Google Scholar 

  44. S.H. Oh, M.F. Chisholm, Y. Kauffmann, W.D. Kaplan, W. Luo, M. Ruhle, C. Scheu, Oscillatory mass transport in vapor-liquid-solid growth of sapphire nanowires. Science 330, 489–493 (2010)

    Article  CAS  Google Scholar 

  45. E.W. Petersen, E.M. Likovich, K.J. Russell, V. Narayanamurti, Growth of ZnO nanowires catalyzed by size-dependent melting of Au nanoparticles. Nanotechnology 20, 405603 (2009)

    Article  CAS  Google Scholar 

  46. H. Okamoto, T.B. Massalski, The Au-Zn (Gold-Zinc) system. Bull. Alloy Phase Diagram 10, 59–69 (1989)

    Article  CAS  Google Scholar 

  47. J.E. Allen, E.R. Hemesath, D.E. Perea, J.L. Lensch-Falk, Z.Y. Li, F. Yin, M.H. Gass, P. Wang, A.L. Bleloch, R.E. Palmer, L.J. Lauhon, High resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol. 3(3), 168–173 (2008)

    Article  CAS  Google Scholar 

  48. C.M. Eichfeld, S.S.A. Gerstl, T. Prosa, Y. Ke, J.M. Redwing, S.E. Mohney, Local electrode atom probe analysis of silicon nanowires grown with an aluminum catalyst. Nanotechnology 23(21), 215205 (2012)

    Article  CAS  Google Scholar 

  49. W. Chen, L. Yu, S. Misra, Z. Fan, P. Pareige, G. Patriarche, S. Bouchoule, P.R. Cabarrocas, Incorporation and redistribution of impurities into silicon nanowires during metal-particle-assisted growth. Nat. Commun. 5, 4134 (2014)

    Article  CAS  Google Scholar 

  50. R.T.K. Baker, M.A. Barber, P.S. Harris, F.S. Feates, R.J. Waite, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 26, 51–62 (1972)

    Article  CAS  Google Scholar 

  51. R.T.K. Baker, P.S. Harris, R.B. Thomas, R.J. Waite, Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J. Catal. 30, 86–95 (1973)

    Article  CAS  Google Scholar 

  52. R.T.K. Baker, P.S. Harris, Chemistry and Physics of Carbon, ed. by P.A. Thrower, vol. 14 (Marcel Dekker, New York, 1978)

    Google Scholar 

  53. R.T.K. Baker, J.R. Alonzo, J.A. Dumesic, D.J.C. Yates, Effect of the surface state of iron on filamentous carbon formation. J. Catal. 77, 74–84 (1982)

    Article  CAS  Google Scholar 

  54. R. Philippe, B. Caussat, A. Falqui, Y. Kihn, P. Kalck, S. Bordre, D. Plee, P. Gaillard, D. Bernard, P. Serp, An original growth mode of MWCNTs on alumina supported iron catalysts. J. Catal. 263, 345–358 (2009)

    Article  CAS  Google Scholar 

  55. A. Oberlin, M. Endo, T. Koyama, Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32, 335–349 (1976)

    Article  CAS  Google Scholar 

  56. M. Audier, A. Oberlin, M. Coulon, Crystallographic orientations of catalytic particles in filamentous carbon; Case of simple conical particles. J. Cryst. Growth 55, 549–556 (1981)

    Article  CAS  Google Scholar 

  57. J. Rostrup-Nielsen, D.L. Trimm, Mechanisms of carbon formation on nickel-containing catalysts. J. Catal. 48, 155–165 (1977)

    Article  CAS  Google Scholar 

  58. T. Baird, J.R. Fryer, B. Grant, Structure of fibrous carbon. Nature 233, 329–330 (1971)

    Article  CAS  Google Scholar 

  59. E.L. Evans, J.M. Thomas, P.A. Thrower, P.L. Walker, Growth of filamentary carbon on metallic surfaces during the pyrolysis of methane and acetone. Carbon 11, 441–442 (1973)

    Article  CAS  Google Scholar 

  60. G.G. Tibbetts, Why are carbon filaments tubular? J. Cryst. Growth 66, 632–638 (1984)

    Article  CAS  Google Scholar 

  61. F. Ding, A. Rosén, K. Bolton, The role of the catalytic particle temperature gradient for SWNT growth from small particles. Chem. Phys. Lett. 393, 309–313 (2004)

    Article  CAS  Google Scholar 

  62. F. Ding, K. Bolton, A. Rosén, Nucleation and growth of single-walled carbon nanotubes: a molecular dynamics study. J. Phys. Chem. B 108, 17369–17377 (2004)

    Article  CAS  Google Scholar 

  63. Z. Xu, T. Yan, F. Ding, Atomistic simulation of the growth of defect-free carbon nanotubes. Chem. Sci. 6, 4704–4711 (2015)

    Article  CAS  Google Scholar 

  64. C. Klinke, J.-M. Bonard, K. Kern, Thermodynamic calculations on the catalytic growth of multiwall carbon nano-tubes. Phys. Rev. B 71, 035403 (2005)

    Article  CAS  Google Scholar 

  65. H.A. Stone, Dynamics drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 26, 65–102 (1994)

    Article  Google Scholar 

  66. M.H. Magnussen, K. Deppert, J. Maln, J. Bovin, L. Samuelson, Gold nanoparticles: production, reshaping, and thermal charging. J. Nanoparticle Res. 1, 243–251 (1999)

    Article  Google Scholar 

  67. N.M. Hwang, W.S. Cheong, D.Y. Yoon, D.-Y. Kim, Growth of silicon nanowires by chemical vapor deposition: approach by charged cluster model. J. Cryst. Growth 218, 33–39 (2000)

    Article  CAS  Google Scholar 

  68. L. Rayleigh, On the equilibrium of liquid conducting masses charged with electricity. Philos. Mag. 14, 184 (1882)

    Article  Google Scholar 

  69. L. Last, Y. Levy, J. Jortner, Beyond the Rayleigh instability limit for multi-charged finite systems: from fission to Coulomb explosion. Proc. Natl. Acad. Sci. U.S.A. 99, 9107–9112 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammad, S.N. (2020). The VLS Mechanism. In: Synthesis of Nanomaterials. Springer Series in Materials Science, vol 307. Springer, Cham. https://doi.org/10.1007/978-3-030-57585-4_5

Download citation

Publish with us

Policies and ethics