Skip to main content

Abstract

Preference-based Multi-Objective Evolutionary Algorithm (MOEA) restrict the search to a given region of the Pareto front preferred by the Decision Maker (DM), called the Region of Interest (ROI). In this paper, a new preference-guided MOEA is proposed. In this method, we define the ROI as a preference cone in the objective space. The preferential direction and the aperture of the cone are parameters that the DM has to provide to define the ROI. Given the preference cone, we employ a weight vector generation method that is based on a steady-state evolutionary algorithm. The main idea of our method is to evolve a population of weight vectors towards the characteristics that are desirable for a set of weight vectors in a decomposition-based MOEA framework. The main advantage is that the DM can define the number of weight vectors and thus can control the population size. Once the ROI is defined and the set of weight vectors are generated within the preference cone, we start a decomposition-based MOEA using the provided set of weights in its initialization. Therefore, this enforces the algorithm to converge to the ROI. The results show the benefit and adequacy of the preference cone MOEA/D for preference-guided many-objective optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19(1):45–76. https://doi.org/10.1162/evco_a_00009

  2. Batista LS, Campelo F, Guimarães FG, Ramírez JA (2011) A comparison of dominance criteria in many-objective optimization problems. In: 2011 IEEE Congress of Evolutionary Computation (CEC), pp 2359–2366. https://doi.org/10.1109/CEC.2011.5949909

  3. Bechikh S, Kessentini M, Said LB, Ghédira K (2015) Preference incorporation in evolutionary multiobjective optimization. In: Hurson AR (ed) Advances in computers, vol 98. Elsevier, pp 141–207. https://doi.org/10.1016/bs.adcom.2015.03.001

  4. Cheng R, Jin Y, Olhofer M, Sendhoff B (2016) A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 20(5):773–791. https://doi.org/10.1109/tevc.2016.2519378

  5. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, USA

    Google Scholar 

  6. Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601

    Article  Google Scholar 

  7. Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjective optimization. In: Abraham A, Jain L, Goldberg R (eds) Evolutionary multiobjective optimization: theoretical advances and applications. Springer London, pp 105–145. https://doi.org/10.1007/1-84628-137-7_6

  8. Goulart F, Campelo F (2016) Preference-guided evolutionary algorithms for many-objective optimization. Inf Sci 329(Supplement C):236–255. https://doi.org/10.1016/j.ins.2015.09.015, http://www.sciencedirect.com/science/article/pii/S0020025515006696. Special issue on Discovery Science

  9. Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506. https://doi.org/10.1109/tevc.2005.861417

  10. Keršulienė V, Zavadskas EK, Turskis Z (2010) Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (swara). J Bus Econ Manag 11(2):243–258. https://doi.org/10.3846/jbem.2010.12

  11. Li B, Li J, Tang K, Yao X (2015) Many-objective evolutionary algorithms: a survey. ACM Comput Surv 48(1):1–35. https://doi.org/10.1145/2792984

  12. Meneghini IR, Koochaksaraei RH, Guimarães FG, Gaspar-Cunha A (2018) Information to the eye of the beholder: data visualization for many-objective optimization. In: 2018 IEEE Congress on Evolutionary Computation (CEC). IEEE. https://doi.org/10.1109/cec.2018.8477889

  13. Molina J, Santana LV, Hernández-Díaz AG, Coello CAC, Caballero R (2009) g-dominance: Reference point based dominance for multiobjective metaheuristics. Eur J Oper Res 197(2):685–692. https://doi.org/10.1016/j.ejor.2008.07.015

  14. Ruiz AB, Saborido R, Luque M (2014) A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm. J Global Optim 62(1):101–129. https://doi.org/10.1007/s10898-014-0214-y

  15. Saaty TL (1980) The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill International Book Co., New York

    Google Scholar 

  16. Tian Y, Cheng R, Zhang X, Jin Y (2017) PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput Intell Mag 12(4):73–87. https://doi.org/10.1109/mci.2017.2742868

  17. Trivedi A, Srinivasan D, Sanyal K, Ghosh A (2017) A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Trans Evol Comput 21(3):440–462. https://doi.org/10.1109/tevc.2016.2608507

  18. Zhang Q, Li H (2007) MOEA/d: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731. https://doi.org/10.1109/tevc.2007.892759

  19. Zhou A, Qu BY, Li H, Zhao SZ, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol Comput 1(1):32–49. https://doi.org/10.1016/j.swevo.2011.03.001

  20. Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: Conference on Parallel Problem Solving from Nature (PPSN VIII). Springer, Berlin, pp 832–842

    Google Scholar 

  21. Zitzler E, Laumanns M, Thiele L (2002) SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou K et al (eds) Evolutionary methods for design, optimisation and control with application to industrial problems (EUROGEN 2001). International Center for Numerical Methods in Engineering (CIMNE), pp 95–100

    Google Scholar 

  22. Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Eiben AE, Bäck T, Schoenauer M, Schwefel HP (eds) Lecture notes in computer science. Springer, Heidelberg, pp 292–301. https://doi.org/10.1007/bfb0056872

  23. Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132. https://doi.org/10.1109/tevc.2003.810758

Download references

Acknowledgments

This work was supported by the Brazilian funding agencies CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Reinaldo Meneghini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reinaldo Meneghini, I., Gadelha Guimarães, F., Gaspar-Cunha, A., Weiss Cohen, M. (2021). Incorporation of Region of Interest in a Decomposition-Based Multi-objective Evolutionary Algorithm. In: Gaspar-Cunha, A., Periaux, J., Giannakoglou, K.C., Gauger, N.R., Quagliarella, D., Greiner, D. (eds) Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences. Computational Methods in Applied Sciences, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-030-57422-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57422-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57421-5

  • Online ISBN: 978-3-030-57422-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics