Skip to main content

Case Study: Occupational Health Risks from Crystalline Silica

  • Chapter
  • First Online:
Quantitative Risk Analysis of Air Pollution Health Effects

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 299))

  • 539 Accesses

Abstract

Chapter 3 pointed out that chronic inflammation mediates an extraordinarily wide range of diseases. Recent progress in understanding intracellular inflammasome assembly, priming, activation, cytokine signaling, and interactions with mitochondrial reactive oxygen species (ROS), lysosome disruption, cell death, and prion-like polymerization and spread of inflammasomes among cells, has potentially profound implications for dose-response modeling. This chapter and Chaps. 5 and 6 further discuss biological mechanisms of exposure concentration and duration thresholds for NLRP3 inflammasome-mediated inflammatory responses, and develop and apply simple biomathematical models of the onset of exposure-related tissue-level chronic inflammation and resulting disease risks. This chapter focuses on respirable crystalline silica (RCS) and lung cancer risk as an example. It proposes an inflammation-mediated two-stage clonal expansion (I-TSCE) model of RCS-induced lung cancer that explains why relatively low estimated concentrations of RCS (e.g., <1 mg/m3) do not increase lung cancer risk and why even high occupational concentrations increase risk only modestly (typically RR < 2). The model of chronic inflammation implies a dose-response threshold for excess cancer risk, in contrast to traditional linear no-threshold (LNT) assumptions. If this implication is correct, then concentrations of crystalline silica (or amphibole asbestos fibers, or other environmental challenges that act via the NLRP3 inflammasome) below the threshold do not cause chronic inflammation and resulting elevated risks of inflammation-mediated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abais JM, Xia M, Zhang Y, Boini KM, Li PL. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal. 2015;22(13):1111–29. https://doi.org/10.1089/ars.2014.5994.

    Article  Google Scholar 

  • Abderrazak A, Syrovets T, Couchie D, El Hadri K, Friguet B, Simmet T, Rouis M. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol. 2015;4:296–307. https://doi.org/10.1016/j.redox.2015.01.

    Article  Google Scholar 

  • Baroja-Mazo A, Martín-Sánchez F, Gomez AI, Martínez CM, Amores-Iniesta J, Compan V, Barberà-Cremades M, Yagüe J, Ruiz-Ortiz E, Antón J, Buján S, Couillin I, Brough D, Arostegui JI, Pelegrín P. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol. 2014;15(8):738–48. https://doi.org/10.1038/ni.2919.

    Article  Google Scholar 

  • Bednash JS, Mallampalli RK. Regulation of inflammasomes by ubiquitination. Cell Mol Immunol. 2016;13(6):722–8. https://doi.org/10.1038/cmi.2016.15.

    Article  Google Scholar 

  • Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009;7(2):99–109. https://doi.org/10.1038/nrmicro2070.

    Article  Google Scholar 

  • Bogen KT. Low-dose dose-response for in vitro Nrf2-ARE activation in human HepG2 Cells. Dose-Response. 2017;15(2):1559325817699696. https://doi.org/10.1177/1559325817699696.

    Article  Google Scholar 

  • Bolt HM, Foth H, Hengstler JG, Degen GH. Carcinogenicity categorization of chemicals-new aspects to be considered in a European perspective. Toxicol Lett. 2004;151(1):29–41.

    Article  Google Scholar 

  • Borm P, Cassee FR, Oberdörster G. Lung particle overload: old school -new insights? Part Fibre Toxicol. 2015;12:10. https://doi.org/10.1186/s12989-015-0086-4.

    Article  Google Scholar 

  • Borm PJA, Fowler P, Kirkland D. An updated review of the genotoxicity of respirable crystalline silica. Part Fibre Toxicol. 2018;15(1):23. https://doi.org/10.1186/s12989-018-0259-z.

    Article  Google Scholar 

  • Boya P, Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene. 2008;27(50):6434–51. https://doi.org/10.1038/onc.2008.310.

    Article  Google Scholar 

  • Brown BN, Price IM, Toapanta FR, DeAlmeida DR, Wiley CA, Ross TM, Oury TD, Vodovotz Y. An agent-based model of inflammation and fibrosis following particulate exposure in the lung. Math Biosci. 2011;231(2):186–96. https://doi.org/10.1016/j.mbs.2011.03.005.

    Article  Google Scholar 

  • Bruch J, Rehn S, Rehn B, Borm PJ, Fubini B. Variation of biological responses to different respirable quartz flours determined by a vector model. Int J Hyg Environ Health. 2004;207(3):203–16.

    Article  Google Scholar 

  • Butterworth BE, Popp JA, Conolly RB, Goldsworthy TL. Chemically induced cell proliferation in carcinogenesis. IARC Sci Publ. 1992;116:279–305.

    Google Scholar 

  • Butterworth BE, Aylward LL, Hays SM. A mechanism-based cancer risk assessment for 1,4-dichlorobenzene. Regul Toxicol Pharmacol. 2007;49(2):138–48.

    Article  Google Scholar 

  • Calabrese EJ, Baldwin LA. Can the concept of hormesis be generalized to carcinogenesis? Regul Toxicol Pharmacol. 1998;28(3):230–41.

    Article  Google Scholar 

  • Camberlein E, Cohen JM, José R, Hyams CJ, Callard R, Chimalapati S, Yuste J, Edwards LA, Marshall H, van Rooijen N, Noursadeghi M, Brown JS. Importance of bacterial replication and alveolar macrophage-independent clearance mechanisms during early lung infection with Streptococcus pneumoniae. Infect Immun. 2015;83(3):1181–9. https://doi.org/10.1128/IAI.02788-14.

    Article  Google Scholar 

  • Castranova V, Porter D, Millecchia L, Ma JY, Hubbs AF, Teass A. Effect of inhaled crystalline silica in a rat model: time course of pulmonary reactions. Mol Cell Biochem. 2002;234-235(1-2):177–84.

    Article  Google Scholar 

  • Checkoway H, Heyer NJ, Seixas NS, Welp EA, Demers PA, Hughes JM, Weill H. Dose-response associations of silica with nonmalignant respiratory disease and lung cancer mortality in the diatomaceous earth industry. Am J Epidemiol. 1997;145(8):680–8.

    Article  Google Scholar 

  • Clouter, A, Brown, D, Höhr, D. Inflammatory effects of respirable quartz collected in workplaces versus standard DQ12 quartz: particle surface correlates. Toxicol Sci. 2001;63(1):90–98.

    Google Scholar 

  • Cohen SM. Role of cell proliferation in regenerative and neoplastic disease. Toxicol Lett. 1995;82:15–21.

    Article  Google Scholar 

  • Coll RC, O’Neill L, Schroder K. Questions and controversies in innate immune research: what is the physiological role of NLRP3? Cell Death Dis. 2016;2:16019. https://doi.org/10.1038/cddiscovery.2016.19.

    Article  Google Scholar 

  • Conolly RB, Gaylor DW, Lutz WK. Population variability in biological adaptive responses to DNA damage and the shapes of carcinogen dose-response curves. Toxicol Appl Pharmacol. 2005;207(2 Suppl):570–5.

    Article  Google Scholar 

  • Cox LA Jr. An exposure-response threshold for lung diseases and lung cancer caused by crystalline silica. Risk Anal. 2011;31(10):1543–60. https://doi.org/10.1111/j.1539-6924.2011.01610.x.

    Article  Google Scholar 

  • Cox LA Jr. Effects of exposure estimation errors on estimated exposure-response relations for PM2.5. Environ Res. 2018a;164:636–46. https://doi.org/10.1016/j.envres.2018.03.038.

    Article  Google Scholar 

  • Cox LA Jr. (2018b) Biological mechanisms of non-linear dose-response for respirable mineral fibers. Toxicol Appl Pharmacol. https://doi.org/10.1016/j.taap.2018.06.016.

  • Franklin BS, Bossaller L, De Nardo D, Ratter JM, Stutz A, Engels G, Brenker C, Nordhoff M, Mirandola SR, Al-Amoudi A, Mangan MS, Zimmer S, Monks BG, Fricke M, Schmidt RE, Espevik T, Jones B, Jarnicki AG, Hansbro PM, Busto P, Marshak-Rothstein A, Hornemann S, Aguzzi A, Kastenmüller W, Latz E. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol. 2014;15(8):727–37. https://doi.org/10.1038/ni.2913.

    Article  Google Scholar 

  • Freire J, Ajona D, de Biurrun G, Agorreta J, Segura V, Guruceaga E, Bleau AM, Pio R, Blanco D, Montuenga LM. Silica-induced chronic inflammation promotes lung carcinogenesis in the context of an immunosuppressive microenvironment. Neoplasia. 2013;15(8):913–24.

    Article  Google Scholar 

  • Fukushima S, Kinoshita A, Puatanachokchai R, Kushida M, Wanibuchi H, Morimura K. Hormesis and dose-response-mediated mechanisms in carcinogenesis: evidence for a threshold in carcinogenicity of non-genotoxic carcinogens. Carcinogenesis. 2005;26(11):1835–45.

    Article  Google Scholar 

  • Gottschalk RA, Martins AJ, Angermann BR, Dutta B, Ng CE, Uderhardt S, Tsang JS, Fraser ID, Meier-Schellersheim M, Germain RN. Distinct NF-κB and MAPK activation thresholds uncouple steady-state microbe sensing from anti-pathogen inflammatory responses. Cell Syst. 2016;2(6):378–90. https://doi.org/10.1016/j.cels.2016.04.016.

    Article  Google Scholar 

  • Harijith A, Ebenezer DL, Natarajan V. Reactive oxygen species at the crossroads of inflammasome and inflammation. Front Physiol. 2014;5:352. https://doi.org/10.3389/fphys.2014.00352.

    Article  Google Scholar 

  • Hauenstein AV, Zhang L, Wu H. The hierarchical structural architecture of inflammasomes, supramolecular inflammatory machines. Curr Opin Struct Biol. 2015;31:75–83. https://doi.org/10.1016/j.sbi.2015.03.014.

    Article  Google Scholar 

  • He Q, Fu Y, Tian D, Yan W. The contrasting roles of inflammasomes in cancer. Am J Cancer Res. 2018;8(4):566–583. Published 2018 Apr 1.

    Google Scholar 

  • Jessop F, Hamilton RF Jr, Rhoderick JF, Fletcher P, Holian A. Phagolysosome acidification is required for silica and engineered nanoparticle-induced lysosome membrane permeabilization and resultant NLRP3 inflammasome activity. Toxicol Appl Pharmacol. 2017;318:58–68. https://doi.org/10.1016/j.taap.2017.01.012.

    Article  Google Scholar 

  • Katsnelson MA, Lozada-Soto KM, Russo HM, Miller BA, Dubyak GR. NLRP3 inflammasome signaling is activated by low-level lysosome disruption but inhibited by extensive lysosome disruption: roles for K+ efflux and Ca2+ influx. Am J Physiol Cell Physiol. 2016;311(1):C83–C100. https://doi.org/10.1152/ajpcell.00298.2015.

    Article  Google Scholar 

  • Kenah E, Robins JM. Network-based analysis of stochastic SIR epidemic models with random and proportionate mixing. J Theor Biol. 2007;249(4):706–22.

    Article  Google Scholar 

  • Kuempel ED, Tran CL, Bailer AJ, Porter DW, Hubbs AF, Castranova V. Biological and statistical approaches to predicting human lung cancer risk from silica. J Environ Pathol Toxicol Oncol. 2001;20(Suppl 1):15–32.

    Google Scholar 

  • Kusaka T, Nakayama M, Nakamura K, Ishimiya M, Furusawa E, Ogasawara K. Effect of silica particle size on macrophage inflammatory responses. PLoS One. 2014;9(3):e92634. https://doi.org/10.1371/journal.pone.0092634.

    Article  Google Scholar 

  • Liu YG, Chen JK, Zhang ZT, Ma XJ, Chen YC, Du XM, Liu H, Zong Y, Lu GC. NLRP3 inflammasome activation mediates radiation-induced pyroptosis in bone marrow-derived macrophages. Cell Death Dis. 2017;8(2):e2579. https://doi.org/10.1038/cddis.2016.460.

    Article  Google Scholar 

  • Lopez-Castejon G, Luheshi NM, Compan V, High S, Whitehead RC, Flitsch S, Kirov A, Prudovsky I, Swanton E, Brough D. Deubiquitinases regulate the activity of caspase-1 and interleukin-1β secretion via assembly of the inflammasome. J Biol Chem. 2013;288(4):2721–33. https://doi.org/10.1074/jbc.M112.422238.

    Article  Google Scholar 

  • Lu A, Wu H. Structural mechanisms of inflammasome assembly. FEBS J. 2015;282(3):435–44. https://doi.org/10.1111/febs.13133.

    Article  Google Scholar 

  • Luna-Gomes T, Santana PT, Coutinho-Silva R. Silica-induced inflammasome activation in macrophages: role of ATP and P2X7 receptor. Immunobiology. 2015;220(9):1101–6. https://doi.org/10.1016/j.imbio.2015.05.004.

    Article  Google Scholar 

  • Lutz WK. Dose-response relationships in chemical carcinogenesis: superposition of different mechanisms of action, resulting in linear-nonlinear curves, practical thresholds, J-shapes. Mutat Res. 1998;405(2):117–24.

    Article  Google Scholar 

  • Lutz WK, Kopp-Schneider A. Threshold dose response for tumor induction by genotoxic carcinogens modeled via cell-cycle delay. Toxicol Sci. 1999;49(1):110–5.

    Article  Google Scholar 

  • Mamuya SH, Bråtveit M, Mwaiselage J, Moen BE. Variability of exposure and estimation of cumulative exposure in a manually operated coal mine. Ann Occup Hyg. 2006;50(7):737–45.

    Google Scholar 

  • Mayne ST, Buenconsejo J, Janerich DT. Previous lung disease and risk of lung cancer among men and women nonsmokers. Am J Epidemiol. 1999;149(1):13–20.

    Article  Google Scholar 

  • McCarthy WJ, Meza R, Jeon J, Moolgavkar SH. Chapter 6: lung cancer in never smokers: epidemiology and risk prediction models. Risk Anal. 2012;32(Suppl 1):S69–84. https://doi.org/10.1111/j.1539-6924.2012.01768.x.

    Article  Google Scholar 

  • Meldrum M, Howden P. Crystalline silica: variability in fibrogenic potency. Ann Occup Hyg. 2002;46:27–30.

    Google Scholar 

  • Miraldi ER, Thomas PJ, Romberg L. Allosteric models for cooperative polymerization of linear polymers. Biophys J. 2008;95(5):2470–86. https://doi.org/10.1529/biophysj.107.126219.

    Article  Google Scholar 

  • Moldoveanu B, Otmishi P, Jani P, Walker J, Sarmiento X, Guardiola J, Saad M, Yu J. Inflammatory mechanisms in the lung. J Inflamm Res. 2009;2:1–11.

    Google Scholar 

  • Neri FM, Pérez-Reche FJ, Taraskin SN, Gilligan CA. Heterogeneity in susceptible-infected-removed (SIR) epidemics on lattices. J R Soc Interface. 2011;8(55):201–9. https://doi.org/10.1098/rsif.2010.0325.

    Article  Google Scholar 

  • Paul MK, Bisht B, Darmawan DO, Chiou R, Ha VL, Wallace WD, Chon AT, Hegab AE, Grogan T, Elashoff DA, Alva-Ornelas JA, Gomperts BN. Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent Notch signaling. Cell Stem Cell. 2014;15(2):199–214. https://doi.org/10.1016/j.stem.2014.05.009.

    Article  Google Scholar 

  • Pavan C, Rabolli V, Tomatis M, Fubini B, Lison D. Why does the hemolytic activity of silica predict its pro-inflammatory activity? Part Fibre Toxicol. 2014;11:76. https://doi.org/10.1186/s12989-014-0076-y.

    Article  Google Scholar 

  • Peeters PM, Perkins TN, Wouters EF, Mossman BT, Reynaert NL. Silica induces NLRP3 inflammasome activation in human lung epithelial cells. Part Fibre Toxicol. 2013;10:3.

    Article  Google Scholar 

  • Poinen-Rughooputh S, Rughooputh MS, Guo Y, Rong Y, Chen W. Occupational exposure to silica dust and risk of lung cancer: an updated meta-analysis of epidemiological studies. BMC Public Health. 2016;16(1):1137.

    Article  Google Scholar 

  • Pollard KM. Silica, silicosis, and autoimmunity. Front Immunol. 2016;7:97. https://doi.org/10.3389/fimmu.2016.00097.

    Article  Google Scholar 

  • Porter DW, Hubbs AF, Mercer R, Robinson VA, Ramsey D, McLaurin J, Khan A, Battelli L, Brumbaugh K, Teass A, Castranova V. Progression of lung inflammation and damage in rats after cessation of silica inhalation. Toxicol Sci. 2004;79(2):370–80.

    Article  Google Scholar 

  • Porter DW, Millecchia LL, Willard P, Robinson VA, Ramsey D, McLaurin J, Khan A, Brumbaugh K, Beighley CM, Teass A, Castranova V. Nitric oxide and reactive oxygen species production causes progressive damage in rats after cessation of silica inhalation. Toxicol Sci. 2006;90(1):188–97.

    Article  Google Scholar 

  • Rabolli V, Lison D, Huaux F. The complex cascade of cellular events governing inflammasome activation and IL-1β processing in response to inhaled particles. Part Fibre Toxicol. 2016;13(1):40. https://doi.org/10.1186/s12989-016-0150-8.

    Article  Google Scholar 

  • Ren F, Wang K, Zhang T, Jiang J, Nice EC, Huang C. New insights into redox regulation of stem cell self-renewal and differentiation. Biochim Biophys Acta. 2015;1850(8):1518–26. https://doi.org/10.1016/j.bbagen.2015.02.017.

    Article  Google Scholar 

  • Rhomberg LR, Chandalia JK, Long CM, Goodman JE. Measurement error in environmental epidemiology and the shape of exposure-response curves. Crit Rev Toxicol. 2011;41(8):651–71. https://doi.org/10.3109/10408444.2011.563420.

    Article  Google Scholar 

  • Robb CT, Regan KH, Dorward DA, Rossi AG. Key mechanisms governing resolution of lung inflammation. Semin Immunopathol. 2016;38(4):425–48. https://doi.org/10.1007/s00281-016-0560-6.

    Article  Google Scholar 

  • Sayan M, Mossman BT. The NLRP3 inflammasome in pathogenic particle and fibre-associated lung inflammation and diseases. Part Fibre Toxicol. 2016;13(1):51. https://doi.org/10.1186/s12989-016-016.

    Article  Google Scholar 

  • Schetter AJ, Heegaard NH, Harris CC. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis. 2010;31(1):37–49. https://doi.org/10.1093/carcin/bgp272.

    Article  Google Scholar 

  • Shi CS, Shenderov K, Huang NN, Kabat J, Abu-Asab M, Fitzgerald KA, Sher A, Kehrl JH. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol. 2012;13(3):255–63. https://doi.org/10.1038/ni.2215.

    Article  Google Scholar 

  • Smith AM, McCullers JA, Adler FR. Mathematical model of a three-stage innate immune response to a pneumococcal lung infection. J Theor Biol. 2011;276(1):106–16. https://doi.org/10.1016/j.jtbi.2011.01.052.

    Article  Google Scholar 

  • Snow ET, Sykora P, Durham TR, Klein CB. Arsenic, mode of action at biologically plausible low doses: what are the implications for low dose cancer risk? Toxicol Appl Pharmacol. 2005;207(2 Suppl):557–64.

    Article  Google Scholar 

  • Sweeney LM, Parker A, Haber LT, Tran CL, Kuempel ED. Application of Markov chain Monte Carlo analysis to biomathematical modeling of respirable dust in US and UK coal miners. Regul Toxicol Pharmacol. 2013;66(1):47–58. https://doi.org/10.1016/j.yrtph.2013.02.003.

    Article  Google Scholar 

  • Tran CL, Graham M, Buchanan D (2001) A biomathematical model for rodent and human lung describing exposure, dose, and response to inhaled silica. institute of occupational medicine technical memorandum. Available at: http://www.iom-world.org/pubs/IOM_TM0104.pdf

  • Tran CL, Kuempel ED, Castranova V. A rat lung model of exposure, dose and response to inhaled silica. Ann Occup Hyg. 2002;46(Supplement 1):14.

    Google Scholar 

  • Turci F, Pavan C, Leinardi R, Tomatis M, Pastero L, Garry D, Anguissola S, Lison D, Fubini B. Revisiting the paradigm of silica pathogenicity with synthetic quartz crystals: the role of crystallinity and surface disorder. Part Fibre Toxicol. 2016;13(1):32. https://doi.org/10.1186/s12989-016-0136-6.

    Article  Google Scholar 

  • Vineis P, Schatzkin A, Potter JD. Models of carcinogenesis: an overview. Carcinogenesis. 2010;31(10):1703–9. https://doi.org/10.1093/carcin/bgq087.

    Article  Google Scholar 

  • Volz E, Meyers LA. Epidemic thresholds in dynamic contact networks. J R Soc Interface. 2009;6(32):233–41. https://doi.org/10.1098/rsif.2008.0218.

    Article  Google Scholar 

  • Wang W, Liu Q-H, Zhong L-F, Tang M, Gao H, Stanley HE. Predicting the epidemic threshold of the susceptible-infected-recovered model. Sci Rep. 2016;6:24676. https://doi.org/10.1038/srep24676.

    Article  Google Scholar 

  • Warheit DB, Kreiling R, Levy LS. Relevance of the rat lung tumor response to particle overload for human risk assessment - update and interpretation of new data since ILSI 2000. Toxicology. 2016;374:42–59. https://doi.org/10.1016/j.tox.2016.11.013.

    Article  Google Scholar 

  • Whysner J, Williams GM. Saccharin mechanistic data and risk assessment: urine composition, enhanced cell proliferation, and tumor promotion. Pharmacol Ther. 1996;71(1-2):225–52.

    Article  Google Scholar 

  • Wolf DC, Butterworth BE. Risk assessment of inhaled chloroform based on its mode of action. Toxicol Pathol. 1997;25(1):49–52.

    Article  Google Scholar 

  • Zaballa I, Eidemüller M. Mechanistic study on lung cancer mortality after radon exposure in the Wismut cohort supports important role of clonal expansion in lung carcinogenesis. Radiat Environ Biophys. 2016;55(3):299–315. https://doi.org/10.1007/s00411-016-0659-0.

    Article  Google Scholar 

  • Zeka A, Gore R, Kriebel D. The two-stage clonal expansion model in occupational cancer epidemiology: results from three cohort studies. Occup Environ Med. 2011;68(8):618–24. https://doi.org/10.1136/oem.2009.053983.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cox Jr., L.A. (2021). Case Study: Occupational Health Risks from Crystalline Silica. In: Quantitative Risk Analysis of Air Pollution Health Effects. International Series in Operations Research & Management Science, vol 299. Springer, Cham. https://doi.org/10.1007/978-3-030-57358-4_4

Download citation

Publish with us

Policies and ethics