Skip to main content

Dynamics of Andean Treeline Ecotones: Between Cloud Forest and Páramo Geocritical Tropes

  • Chapter
  • First Online:
The Andean Cloud Forest

Abstract

In the new critical biogeography framework, Cloud Forests are conceived as scalar artifacts of both, historicity’s (c.f. temporal) and spatiality’s (c.f. areal) interdigitations of the socio-ecological production mountainscapes. Particularly in the tropical Andes, where the greatest concentration of Tropical Montane Cloud Forest (TMCF) ecosystems exists, most of the research endeavor has been devoted to spatio-temporal “landscape characterization” of many functional traits or ecological niches available along the verdant gradient (see Chap. 1), and to create a “sense of place” that could make them unique; they persist at present appealing to the eye and to the mind. Because of my affinity with the neotropical realm, I include most examples or case studies from the tropical and subtropical Andes, yet extreme cases of cloud forests can be pointed from the Patagonian or even the Magallanic Andes of the Terra Australis, where the mystical fog shrouding is as spectacular as in the Andean crescent. When possible, I use vernacular descriptors of pueblos originarios to describe the terms used regionally for the cloud forest ecosystem, wherever they might be located.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen TR, Walsh SJ, Cairns DM, Messina JP, Butler DR, Malanson GP (2004) Geostatistics and spatial analysis: characterizing form and pattern at the alpine treeline. In: Geographic information science and mountain geomorphology. Springer, Berlin, pp 189–218

    Google Scholar 

  • Appenzeller T (2019) Global warming has made iconic Andean peak unrecognizable. Science 365(6458):1094–1097

    Article  CAS  PubMed  Google Scholar 

  • Acosta-Solis M (1976) Vocabulario basico de fitoecologia: rectificacion terminologica de la obra Holdridge. Instituto Ecuatoriano de Ciencias Naturales. Quito, EC.

    Google Scholar 

  • Baeid C (1999) Polylepis spp. en los Andes centrales: un análisis preliminar sobre cambios climáticos y el impacto de la actividad humana en su distribución. In: Desarrollo Sustentable de Montañas: Entendiendo las Interfaces Ecológicas para la Gestión de Paisajes Culturales en los Andes. Sarmiento F, Hidalgo J (eds) Memorias del III Simposio Internacional de la Asociación de Montañas Andinas, Quito

    Google Scholar 

  • Bowman WD, Cairns DM, Baron JS, Seastedt TR (2002) Islands in the sky: alpine and treeline ecosystems of the Rockies. Rocky Mountain futures: an ecological perspective. Island Press, Washington, DC, pp 183–202

    Google Scholar 

  • Bruijnzeel LA, Scatena FN, Hamilton LS (2011) Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bubb PI, May I, Miles L (2004) Cloud forest agenda. UNEP-WCMC biodiversity series 20. UNEP-WCMC, Cambridge

    Google Scholar 

  • Chepstow-Lusty AJ, Bennett KD, Switsur VR, Kendall A (1996) 4000 years of human impact and vegetation change in the central Peruvian Andes—with events parallelling the Maya record? Antiquity 70(270):824–833

    Article  Google Scholar 

  • Churchill S, Balslev H, Forero E, Luteyn J (1995) Biodiversity and conservation of Neotropical montane forests. The New York Botanical Garden, Bronx. 702pp

    Google Scholar 

  • Chlatante D, Scippa G, DiLorio A, Sarnataro M (2003) The influence of steep slopes on root system development. J Plant Growth Regul 4:247–260

    Google Scholar 

  • Delibes M, Castañeda I, Fedriani JM (2017) Tree-climbing goats disperse seeds during rumination. Front Ecol Environ 15(4):222–223

    Article  Google Scholar 

  • Dodson CH, Gentry AH (1991) Biological extinction in western ecuador. Annals of the Missouri Botanical Garden 78(2):273

    Google Scholar 

  • Ellenberg H (1979) Man’s influence on tropical mountain ecosystems in South America. J Ecol 67:401–416

    Article  Google Scholar 

  • Ellenberg H (1958) Wald oder Steppe? Die natürliche Pflanzendecke der Anden Perus. Umschau 1958:645–681

    Google Scholar 

  • Elliott GP, Kipfmueller KF (2010) Multi-scale influences of slope aspect and spatial pattern on ecotonal dynamics at upper treeline in the southern Rocky Mountains, USA. Arct Antarct Alp Res 42(1):45–56

    Article  Google Scholar 

  • Foster P (2001) The potential negative impacts of global climate change on tropical montane cloud forests. Earth Sci Rev 55(1–2):73–106

    Article  Google Scholar 

  • Frascaroli F, Fjeldted T (2018) From abstractions to actions: re-embodying the religion and conservation nexus. J Stud Relig Nat Cult 11(4):511–534

    Article  Google Scholar 

  • Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18(4):571–582

    Article  Google Scholar 

  • Gioda A, Hernández Z, Gonzáles E, Espejo R (1995) Fountain trees in the Canary Islands: legend and reality. Adv Hortic Sci 9(3):112–118

    Google Scholar 

  • Hamilton L, Juvik J, Scatena F (1993) Tropical montane cloud forests. The East West Center, Honolulu. 284pp

    Google Scholar 

  • Hamilton L, Juvik J, Scatena F (1994) The Puerto Rico tropical montane cloud forests symposium: introduction and workshop synthesis. In: Ecological studies, vol 110. Springer, New York, pp 1–23

    Google Scholar 

  • Huisman SN, Bush MB, McMichael CN (2019) Four centuries of vegetation change in the mid-elevation Andean forests of Ecuador. Veg Hist Archaeobotany 1:1–11

    Google Scholar 

  • Knapp G (1991) Andean ecology: adaptive dynamics in Ecuador. Westview Press, Boulder

    Google Scholar 

  • Kapelle M, Brown A (2001) Bosques Nublados del Neotrópico. National Institute of Biodiversity (InBIO), San José. 698pp

    Google Scholar 

  • Körner C (2012) Alpine treelines: functional ecology of the global high elevation tree limits. Springer Science & Business Media, Basel

    Book  Google Scholar 

  • Laimer HJ (2017) Anthropogenically induced landslides—a challenge for railway infrastructure in mountainous regions. Eng Geol 222(1):92–101

    Article  Google Scholar 

  • Luteyn JL, Balslev H (1992) Páramo: an Andean ecosystem under human influence. Academic Press, London

    Google Scholar 

  • Lyons W (2019) Cloud forests of Costa Rica: ecosystems in Peril. Weatherwise 72(3):32–37

    Article  Google Scholar 

  • Malanson GP, Butler DR, Fagre DB, Walsh SJ, Tomback DF, Daniels LD, Resler LM, Smith WK, Weiss DJ, Peterson DL, Bunn AG (2007) Alpine treeline of western North America: linking organism-to-landscape dynamics. Phys Geogr 28(5):378–396

    Article  Google Scholar 

  • Malanson GP, Resler LM, Bader MY, Holtmeier FK, Butler DR, Weiss DJ, Daniels LD, Fagre DB (2011) Mountain treelines: a roadmap for research orientation. Arct Antarct Alp Res 43(2):167–177

    Article  Google Scholar 

  • Malanson GP, Resler LM (2016) A size-gradient hypothesis for alpine treeline ecotones. J Mt Sci 13(7):1154–1116

    Article  Google Scholar 

  • Martin PH, Bellingham PJ (2016) Towards integrated ecological research in tropical montane cloud forests. J Trop Ecol 32(5):345–354

    Article  Google Scholar 

  • Mathisen IE, Mikheeva A, Tutubalina OV, Aune S, Hofgaard A (2014) Fifty years of tree line change in the Khibiny Mountains, Russia: advantages of combined remote sensing and dendroecological approaches. Appl Veg Sci 17(1):6–16

    Article  Google Scholar 

  • Miehe G, Miehe S (2000) Comparative high mountain research on the treeline ecotone under human impact: carl troll’s “asymmetrical zonation of the humid vegetation types of the world” of 1948 reconsidered. Erdkunde, pp 34–50

    Google Scholar 

  • Möhl P, Mörsdorf MA, Dawes MA, Hagedorn F, Bebi P, Viglietti D, Freppaz M, Wipf S, Körner C, Thomas FM, Rixen C (2019) Twelve years of low nutrient input stimulates growth of trees and dwarf shrubs in the treeline ecotone. J Ecol 107(2):768–780

    Article  Google Scholar 

  • Myers N (2003) Biodiversity hotspots revisited. Bioscience 53(10):916–917

    Article  Google Scholar 

  • Myster RW (2012) Ecotones between forest and grasslands. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Myster RW, Sarmiento FO (1998) Seed inputs to microsite patch recovery on two Tropandean landslides in Ecuador. Restor Ecol 6(1):1–10

    Article  Google Scholar 

  • Nadkarni NM, Solano R (2002) Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach. Oecologia 131(4):580–586

    Article  PubMed  Google Scholar 

  • Naess A (1989) Metaphysics of the treeline. Trumpeter 6(2):45

    Google Scholar 

  • Penney D, Oschendorf J (2015) The Great Inka Road: Engineering an Empire. Smithsonian Institution.

    Google Scholar 

  • Rahbek C, Borregaard M, Coldwell R, Dalsgaard B, Holt B, Morueta-Holme N, Nogues-Bravo D, Whottaker R, Fjeldsa J (2019) Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365:1108–1113. (special issue on Mountain Life)

    Article  CAS  PubMed  Google Scholar 

  • Resler LM (2006) Geomorphic controls of spatial pattern and process at alpine treeline. Prof Geogr 58(2):124–138

    Article  Google Scholar 

  • Sarmiento FO (2016) Neotropical mountains beyond water supply: environmental services as a trifecta of sustainable mountain development. In: Greenwood G, Shroder J (eds) Mountain ice and water: investigations of the hydrologic cycle in alpine environments. Elsevier, New York, pp 309–324

    Chapter  Google Scholar 

  • Sarmiento FO (2012) Contesting Páramo: critical biogeography of the northern Andean Highlands. Kona Publishing. Higher Education Division, Charlotte, NC. 150pp

    Google Scholar 

  • Sarmiento FO (2002) Anthropogenic change in the landscapes of highland Ecuador. Geogr Rev 92(2):213–234

    Article  Google Scholar 

  • Sarmiento FO (2000) Breaking mountain paradigms: ecological effects on human impacts in man-aged tropandean landscapes. AMBIO J Hum Environ 29(7):423–432

    Article  Google Scholar 

  • Sarmiento FO (1995a) Restoration of equatorial Andes: the challenge for conservation of trop-Andean landscapes. In: Churchill SH, Balslev H, Forero E, Luteyn J (eds) Biodiversity and conservation of Neotropical montane forests. The New York Botanical Garden, Bronx, pp 637–651. 702pp

    Google Scholar 

  • Sarmiento FO (1995b) Naming and knowing an Ecuadorian landscape: A case study of the Maquipucuna Reserve. The George Wright Forum 12(1):15–22

    Google Scholar 

  • Sarmiento FO (1987) Antología Ecológica del Ecuador: Desde la Selva hasta el Mar. Editorial Casa de la Cultura Ecuatoriana. Museo Ecuatoriano de Ciencias Naturales, Quito

    Google Scholar 

  • Sarmiento FO, Hitchner S (2017) Indigeneity and the sacred: indigenous revival and the conservation of sacred natural sites in the Americas. Berghahn Books, New York. 266pp

    Book  Google Scholar 

  • Sarmiento FO, Ibarra JT, Barreau A, Pizarro JC, Rozzi R, González JA, Frolich LM (2017) Applied montology using critical biogeography in the Andes. Ann Am Assoc Geogr 107(2):416–428

    Google Scholar 

  • Sarmiento FO, Frolich LM (2002) Andean cloud forest tree lines. Mt Res Dev 22(3):278–288

    Article  Google Scholar 

  • Sylvester SP, Sylvester MD, Kessler M (2014) Inaccessible ledges as refuges for the natural vegetation of the high Andes. J Veg Sci 25(5):1225–1234

    Article  Google Scholar 

  • Taylor BR (2010) Dark green religion: nature spirituality and the planetary future. University of California Press, Berkeley

    Google Scholar 

  • Varela L (2008) La alta montaña del norte de los Andes: El páramo, un ecosistema antropogénico. Pirineos 163:85–95

    Article  Google Scholar 

  • Wang Y, Zhu H, Liang E, Camarero JJ (2016) Impact of plot shape and size on the evaluation of treeline dynamics in the Tibetan Plateau. Trees 30(4):1045–1056

    Article  Google Scholar 

  • White S (2013) Grass páramo as hunter-gatherer landscape. The Holocene 23(6):898–915

    Article  Google Scholar 

  • Young KR, Leon B (2006) Tree-line changes along the Andes: implications of spatial patterns and dynamics. Philos Trans R Soc B 362(1478):263–272

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fausto O. Sarmiento PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarmiento, F.O. (2021). Dynamics of Andean Treeline Ecotones: Between Cloud Forest and Páramo Geocritical Tropes. In: Myster, R.W. (eds) The Andean Cloud Forest. Springer, Cham. https://doi.org/10.1007/978-3-030-57344-7_2

Download citation

Publish with us

Policies and ethics