Skip to main content

Crack Resistance of Concretes Reinforced with Polypropylene Fiber

  • Conference paper
  • First Online:
Proceedings of EcoComfort 2020 (EcoComfort 2020)

Abstract

The article presents the results of the study of the influence of dispersed reinforcement of cement concrete with polypropylene fiber with different variations of fiber consumption, fine and coarse aggregates, as well as coarse aggregates’ maximum size on the strength and crack resistance. The analysis of complete state diagrams of the studied concrete series shows a slight difference in the subcritical stage of concrete failure (until the beginning of the main crack movement) between reinforced and non-reinforced concrete. The main advantage of the introduced polypropylene fiber could be observed in the supercritical fracture stage - the fiber inhibits the fracture process of the sample after the moment of the main crack development (when the maximum destructive load was already applied). The fracture toughness increases with grain size of coarse aggregate increasing from 15 to 20 mm, with subsequent stabilization of its value. Increasing of the cement-sand mortar amount in concrete leads to increase in the fracture toughness, while the specific effective energy consumption for static fracture does not change significantly and reaches the maximum value at grain spacing coefficient of 1.4. As the amount of introduced fiber increases from 4 to 7 kg per 1 m3 of concrete, the fracture toughness increases and remains at the same level with the maximum fiber content of 10 kg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blikharskyy, Z., Brózda, K., Selejdak, J.: Effectivenes of strengthening loaded RC beams with FRCM system. Arch. Civ. Eng. 64(3), 3–13 (2018)

    Article  Google Scholar 

  2. Blikharskyy, Z., Vashkevych, R., Vegera, P., Blikharskyy, Y.: Crack resistance of RC beams on the shear. In: Lecture Notes in Civil Engineering, vol. 47, pp. 17–24 (2020). https://doi.org/10.1007/978-3-030-27011-7_3

  3. Bobalo, T., Blikharskyy, Y., Kopiika, N., Volynets, M.: Serviceability of RC beams reinforced with high strength rebar’s and steel plate. In: Lecture Notes in Civil Engineering, vol. 47, pp. 25–33 (2020). https://doi.org/10.1007/978-3-030-27011-7_4

  4. Bobalo, T., Blikharskyy, Y., Kopiika, N., Volynets, M.: Theoretical analysis of RC beams reinforced with high strength rebar’s and steel plate. IOP Conf. Ser. Mater. Sci. Eng. 708(1), 012045 (2019)

    Article  Google Scholar 

  5. Khmil, R., Tytarenko, R., Blikharskyy, Y., Vashkevych, R.: Influence of load level during strengthening of reinforced concrete beams on their reliability. IOP Conf. Ser. Mater. Sci. Eng. 708(1), 012054 (2019)

    Article  Google Scholar 

  6. Krainskyi, P., Blikharskyy, Y., Khmil, R., Vegera, P.: Crack resistance of rc columns strengthened by jacketing. In: Lecture Notes in Civil Engineering, vol. 47, pp. 195–201 (2020). https://doi.org/10.1007/978-3-030-27011-7_25

  7. Krainskyi, P., Vegera, P., Khmil, R., Blikharskyy, Z.: Theoretical calculation method for crack resistance of jacketed RC columns. IOP Conf. Ser. Mater. Sci. Eng. 708(1), 012059 (2019)

    Article  Google Scholar 

  8. Blikharskyy, Z., Khmil, R., Vegera, P.: Shear strength of reinforced concrete beams strengthened by PBO fiber mesh under loading. In: MATEC Web of Conferences, vol. 116, p. 02006 (2017). https://doi.org/10.1051/matecconf/201711602006

  9. Krainskyi, P., Blikharskyy, Y., Khmil, R., Blikharskyy, Z.: Experimental study of the strengthening effect of reinforced concrete columns jacketed under service load level. In: MATEC Web of Conferences, vol. 183, p. 02008 (2018). https://doi.org/10.1051/matecconf/20181830200

  10. Lobodanov, M., Vegera, P., Blikharskyy, Z.: Planning experiment for researching reinforced concrete beams with damages. In: Lecture Notes in Civil Engineering, vol. 47, pp. 243–250 (2020). https://doi.org/10.1007/978-3-030-27011-7_31

  11. Selejdak, J., Blikharskyy, Y., Khmil, R., Blikharskyy, Z.: Calculation of reinforced concrete columns strengthened by CFRP. In: Lecture Notes in Civil Engineering, vol. 47, pp. 400–410 (2020). https://doi.org/10.1007/978-3-030-27011-7_51

  12. Vegera, P., Vashkevych, R., Blikharskyy, Z.: Fracture toughness of RC beams with different shear span. In: MATEC Web of Conferences, vol. 174, p. 02021 (2018). https://doi.org/10.1051/matecconf/201817402021

  13. Brandt, A.M.: Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos. Struct. 86(1–3), 3–9 (2008)

    Article  Google Scholar 

  14. Kakooei, S., Akil, H.M., Jamshidi, M., Rouhi, J.: The effects of polypropylene fibers on the properties of reinforced concrete structures. Constr. Build. Mater. 27(1), 73–77 (2012)

    Article  Google Scholar 

  15. Karahan, O., Atis, C.D.: The durability properties of polypropylene fiber reinforced fly ash concrete. Mater. Des. 32(2), 1044–1049 (2011)

    Article  Google Scholar 

  16. Mazaheripour, H., Ghanbarpour, S., Mirmoradi, S.H., Hosseinpour, I.: The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete. Constr. Build. Mater. 25(1), 351–358 (2011)

    Article  Google Scholar 

  17. Vairagade, V.S., Kene, K.S., Deshpande, N.V.: Investigation on compressive and tensile behaviour of fibrillated polypropylene fibers reinforced concrete. Int. J. Eng. Res. Appl. 2(3), 1111–1115 (2012)

    Google Scholar 

  18. Blikhars’kyi, Y.Z.: Anisotropy of the mechanical properties of thermally hardened A500s reinforcement. Mater. Sci. 55, 175–180 (2019). https://doi.org/10.1007/s11003-019-00285-0

  19. Kharchenko, Y.V., Blikharskyy, Z.Y., Vira, V.V., Vasyliv, B.D.: Study of structural changes in a nickel oxide containing anode material during reduction and oxidation at 600 °C. In: Fesenko, O., Yatsenko, L. (eds.) Nanocomposites, Nanostructures, and Their Applications, NANO 2018. Springer Proceedings in Physics, vol. 221. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17759-1_42

  20. Kharchenko, Y., Blikharskyy, Z., Vira, V. Vasyliv, B., Viktoriya, P.: Study of nanostructural changes in a Ni-containing cermet material during reduction and oxidation at 600 °C. Appl. Nanosci. (2020). https://doi.org/10.1007/s13204-020-01391-1

  21. Zhang, Q., Mol’kov, Y.V., Sobko, Y.M. et al. Determination of the Mechanical Characteristics and Specific Fracture Energy of Thermally Hardened Reinforcement. Mater Sci 50, 824–829 (2015). https://doi.org/10.1007/s11003-015-9789-9

  22. Solodkyy, S., Kahanov, V., Hornikovska, I., Turba, Y.: A study of fracture toughness of heavy-weight concrete and foam concrete reinforced by polypropylene fibre for road construction. Eastern Eur. J. Enterp. Technol. 4(5(76)), 40–46 (2015)

    Google Scholar 

  23. Turba, Y., Solodkyy, S., Markiv, T.: Strength and fracture toughness of cement concrete, dispersedly reinforced by combination of polypropylene fibers of two types. In: Lecture Notes in Civil Engineering, vol. 47, pp. 488–494. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-27011-7_62

  24. Xu, Z., Hao, H., Li, H.N.: Experimental study of dynamic compressive properties of fibre reinforced concrete materials with different fibres. Mater. Des. 33, 42–45 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurii Turba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Turba, Y., Solodkyy, S. (2021). Crack Resistance of Concretes Reinforced with Polypropylene Fiber. In: Blikharskyy, Z. (eds) Proceedings of EcoComfort 2020. EcoComfort 2020. Lecture Notes in Civil Engineering, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-030-57340-9_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57340-9_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57339-3

  • Online ISBN: 978-3-030-57340-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics