Skip to main content

Analysis of Optical Brain Signals Using Connectivity Graph Networks

  • Conference paper
  • First Online:
Machine Learning and Knowledge Extraction (CD-MAKE 2020)

Abstract

Graph network analysis (GNA) showed a remarkable role for understanding brain functions, but its application is mainly narrowed to fMRI research. Connectivity analysis (CA) is introduced as a signal-to-graph mapping in a time-causality framework. In this paper, we investigate the application of GNA/CA in fNIRS. To solve the inherent challenges of using CA, we also propose a novel metric: a maximum cross-lag magnitude (MCLM) that efficiently extracts major causality information. We tested MCLM in four types of cognitive activities (mental arithmetic, motor imagery, word generation, and brain workload) from 55 participants. CA/MCLM showed a compelling modeling capacity and revealed unexpected cross-subject network patterns. We found that motion imagery and mental arithmetic share a background network structure, and that the right prefrontal cortex, in AFp8, is an invariable destination for information flows in every stimuli and participant. Therefore, CA/MCLM-fNIRS showed potential for its use along with fMRI in clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anwar, A.R., et al.: Effective connectivity of cortical sensorimotor networks during finger movement tasks: a simultaneous fNIRS, fMRI, EEG study. Brain Topogr. 29(5), 645–660 (2016)

    Article  Google Scholar 

  2. Baccalá, L.A., Sameshima, K.: Partial directed coherence: a new concept in neural structure determination. Biol. Cybern. 84(6), 463–474 (2001)

    Article  Google Scholar 

  3. Behboodi, B., Ji-Woong, C., Hyeon-Ae, J.: Deep neural networks for assessing functional connectivity: an fNIRS study. PhD thesis, Daegu Gyeongbuk Institute of Science and Technology (2018)

    Google Scholar 

  4. Botev, Z., L’Ecuyer, P.: Simulation from the tail of the univariate and multivariate normal distribution. In: Puliafito, A., Trivedi, K.S. (eds.) Systems Modeling: Methodologies and Tools. EICC, pp. 115–132. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-92378-9_8

    Chapter  Google Scholar 

  5. Brannen, J.H., Badie, B., Moritz, C.H., Quigley, M., Elizabeth Meyerand, M., Haughton, V.M.: Reliability of functional MR imaging with word-generation tasks for mapping broca’s area. Am. J. Neuroradiol. 22(9), 1711–1718 (2001)

    Google Scholar 

  6. Chen, J.E., Glover, G.H.: Functional magnetic resonance imaging methods. Neuropsychol. Rev. 25(3), 289–313 (2015)

    Article  Google Scholar 

  7. Ehrlichman, H., Barrett, J.: Right hemispheric specialization for mental imagery: a review of the evidence. Brain Cogn. 2(1), 55–76 (1983)

    Article  Google Scholar 

  8. Farahani, F.V., Karwowski, W., Lighthall, N.R.: Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review. Front. Neurosci. 13, 585 (2019)

    Article  Google Scholar 

  9. Goebel, R., Roebroeck, A., Kim, D.-S., Formisano, E.: Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and granger causality mapping. Magn. Reson. Imaging 21(10), 1251–1261 (2003)

    Article  Google Scholar 

  10. Guo, J.: Oil price forecast using deep learning and ARIMA. In: 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI). IEEE, November 2019

    Google Scholar 

  11. Shin, J., et al.: Simultaneous acquisition of EEG and NIRS during cognitive tasks for an open access dataset. Sci. Data 5(1), 180003 (2018)

    Article  Google Scholar 

  12. Kaminski, M.J., Blinowska, K.J.: A new method of the description of the information flow in the brain structures. Biol. Cybern. 65(3), 203–210 (1991)

    Article  Google Scholar 

  13. Liu, Z., et al.: Effective connectivity analysis of the brain network in drivers during actual driving using near-infrared spectroscopy. Front. Behav. Neurosci. 11, 211 (2017)

    Article  Google Scholar 

  14. Pinti, P., Scholkmann, F., Hamilton, A., Burgess, P., Tachtsidis, I.: Current status and issues regarding pre-processing of fNIRS neuroimaging data: an investigation of diverse signal filtering methods within a general linear model framework. Front. Hum. Neurosci. 12, 505 (2019)

    Article  Google Scholar 

  15. Politis, D.N., Romano, J.P., Wolf, M.: Subsampling. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-1554-7

    Book  MATH  Google Scholar 

  16. Romano, J.P., Wolf, M.: Subsampling inference for the mean in the heavy-tailed case. Metrika 50(1), 55–69 (1999)

    Article  MathSciNet  Google Scholar 

  17. Sandhya, C., Srinidhi, G., Vaishali, R., Visali, M., Kavitha, A.: Analysis of speech imagery using brain connectivity estimators. In: 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing. IEEE (2015)

    Google Scholar 

  18. Santosa, H., Zhai, X., Fishburn, F., Huppert, T.: The NIRS brain AnalyzIR toolbox. Algorithms 11(5), 73 (2018)

    Article  MathSciNet  Google Scholar 

  19. Shin, J., et al.: Open access dataset for EEG+NIRS single-trial classification. IEEE Trans. Neural Syst. Rehabil. Eng. 25(10), 1735–1745 (2017)

    Article  Google Scholar 

  20. Subasi, A.: Biomedical signal analysis and its usage in healthcare. In: Paul, S. (ed.) Biomedical Engineering and its Applications in Healthcare, pp. 423–452. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-3705-5_18

    Chapter  Google Scholar 

  21. Tanida, M., Sakatani, K., Takano, R., Tagai, K.: Relation between asymmetry of prefrontal cortex activities and the autonomic nervous system during a mental arithmetic task: near infrared spectroscopy study. Neurosci. Lett. 369(1), 69–74 (2004)

    Article  Google Scholar 

  22. Vermeij, A., et al.: Prefrontal activation may predict working-memory training gain in normal aging and mild cognitive impairment. Brain Imaging Behav. 11(1), 141–154 (2016)

    Article  Google Scholar 

  23. Zeidman, P., et al.: A guide to group effective connectivity analysis, part 1: first level analysis with DCM for fMRI. NeuroImage 200, 174–190 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Research Council of Norway to the Project No. 273599, “Patient-Centric Engineering in Rehabilitation (PACER)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Antonio Pinto-Orellana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pinto-Orellana, M.A., Hammer, H.L. (2020). Analysis of Optical Brain Signals Using Connectivity Graph Networks. In: Holzinger, A., Kieseberg, P., Tjoa, A., Weippl, E. (eds) Machine Learning and Knowledge Extraction. CD-MAKE 2020. Lecture Notes in Computer Science(), vol 12279. Springer, Cham. https://doi.org/10.1007/978-3-030-57321-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57321-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57320-1

  • Online ISBN: 978-3-030-57321-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics