Skip to main content

An Extension of the DgLARS Method to High-Dimensional Relative Risk Regression Models

  • Conference paper
  • First Online:
Nonparametric Statistics (ISNPS 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 339))

Included in the following conference series:

  • 1124 Accesses

Abstract

In recent years, clinical studies, where patients are routinely screened for many genomic features, are becoming more common. The general aim of such studies is to find genomic signatures useful for treatment decisions and the development of new treatments. However, genomic data are typically noisy and high dimensional, not rarely outstripping the number of patients included in the study. For this reason, sparse estimators are usually used in the study of high-dimensional survival data. In this paper, we propose an extension of the differential geometric least angle regression method to high-dimensional relative risk regression models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Augugliaro, L., Mineo, A.M., Wit, E.C.: Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models. J. R. Stat. Soc. Ser. B 75, 471–498 (2013)

    Article  MathSciNet  Google Scholar 

  2. Augugliaro, L., Mineo, A.M., Wit, E.C.: dglars: an R package to estimate sparse generalized linear models. J. Stat. Soft. 59, 1–40 (2014)

    Article  Google Scholar 

  3. Augugliaro, L., Mineo, A.M., Wit, E.C.: A differential geometric approach to generalized linear models with grouped predictors. Biometrika 103, 563–577 (2016)

    Article  MathSciNet  Google Scholar 

  4. Cox, D.R.: Regression models and life-tables. J. R. Stat. Soc. Ser. B 34, 187–220 (1972)

    MathSciNet  MATH  Google Scholar 

  5. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32, 407–499 (2004)

    Article  MathSciNet  Google Scholar 

  6. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96, 1348–1360 (2001)

    Article  MathSciNet  Google Scholar 

  7. Fan, Y., Tang, C.Y.: Tuning parameter selection in high dimensional penalized likelihood. J. R. Stat. Soc. Ser. B 75, 531–552 (2013)

    Article  MathSciNet  Google Scholar 

  8. Gillet, J.P., Calcagno, A.M., Varma, S., Davison, B., Elstrand, M.B., Ganapathi, R., Kamat, A.A., Sood, A.K., Ambudkar, S.V., Seiden, M.V., others: Multidrug resistance-linked gene signature predicts overall survival of patients with primary ovarian serous carcinoma. Clin. Cancer Res. 18, 3197–3206 (2012)

    Google Scholar 

  9. Goemann, J.J.: L1 penalized estimation in the Cox proportional hazards model. Biom. J. 52, 70–84 (2010)

    MathSciNet  Google Scholar 

  10. Kalbfleisch, J.D., Prentice, R.L.: The Statistical Analysis of Failure Time Data. Wiley Series in Probability and Statistics. Wiley, Hoboken, New Jersey (2002)

    Google Scholar 

  11. Moolgavkar, S.H., Venzon, D.J.: Confidence regions in curved exponential families: application to matched case-control and survival studies with general relative risk function. Ann. Stat. 15, 346–359 (1987)

    Article  MathSciNet  Google Scholar 

  12. Oakes, D.: Survival times: aspects of partial likelihood. Int. Stat. Rev. 49, 235–252 (1981)

    Article  MathSciNet  Google Scholar 

  13. Park, M.Y., Hastie, T.: L1-regularization path algorithm for generalized linear models. J. R. Stat. Soc. Ser. B 69, 659–677 (2007)

    Article  Google Scholar 

  14. Pazira, H., Augugliaro, L., Wit, E.C.: Extended differential geometric lars for high-dimensional GLMs with general dispersion parameter. Stat. Comput. 28, 753–774 (2018)

    Article  MathSciNet  Google Scholar 

  15. Peto, R., Peto, J.: Asymptotically efficient rank invariant test procedures. J. R. Stat. Soc. Ser. A 13, 185–207 (1972)

    Article  Google Scholar 

  16. Prentice, R.L., Breslow, N.E.: Retrospective studies and failure time models. Biometrika 65, 153–158 (1978)

    Article  Google Scholar 

  17. Rao, C.R.: On the distance between two populations. Sankhyā 9, 246–248 (1949)

    Google Scholar 

  18. Ross, R.W., Galsky, M.D., Scher, H.I., Magidson, J., Wassmann, K., Lee, G.S.M., Katz, L., Subudhi, S.K., Anand, A., Fleisher, M., Kantoff, P.W., others.: A whole-blood RNA transcript-based prognostic model in men with castration-resistant prostate cancer: a prospective study. Lancet Oncol. 13, 1105–1113 (2012)

    Google Scholar 

  19. Simon, N., Friedman, J.H., Hastie, T., Tibshirani, R.: Regularization paths for Cox’s proportional hazards model via coordinate descent. J. Stat. Soft. 39, 1–13 (2011)

    Article  Google Scholar 

  20. Thomas, D.C.: Addendum to the paper by Liddell, McDonald, Thomas and Cunliffe. J. R. Stat. Soc. Ser. A 140, 483–485 (1977)

    Google Scholar 

  21. Thomas, D.C: General relative-risk models for survival time and matched case-control analysis. Biometrics 37, 673–686 (1981)

    Google Scholar 

  22. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Tibshirani, R.: The lasso method for variable selection in the Cox model. Stat. Med. 16, 385–395 (1997)

    Article  Google Scholar 

  24. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B. 67, 301–320 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Augugliaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Augugliaro, L., Wit, E.C., Mineo, A.M. (2020). An Extension of the DgLARS Method to High-Dimensional Relative Risk Regression Models. In: La Rocca, M., Liseo, B., Salmaso, L. (eds) Nonparametric Statistics. ISNPS 2018. Springer Proceedings in Mathematics & Statistics, vol 339. Springer, Cham. https://doi.org/10.1007/978-3-030-57306-5_6

Download citation

Publish with us

Policies and ethics