Skip to main content

Three-Dimensional Treatment Simulation for Predictable Orthodontic Treatment Planning and Implementation

  • Chapter
  • First Online:
3D Diagnosis and Treatment Planning in Orthodontics

Abstract

Successful treatment of a patient’s presenting malocclusion requires proper diagnosis, sound treatment planning principles, and correct biomechanical design. Conventional dental casts and two-dimensional radiographs offer limited possibilities to test different treatment approaches and even less possibilities of assessing the movement of each tooth in the three planes of space. Advances in three-dimensional technology has allowed for the implementation of digital diagnostic software into specialty practice to better plan treatment, predict treatment responses, and monitor treatment progress, in all three dimensions of space. Through segmentation of the dentition and with appropriate simulation software, the malocclusion can be virtually corrected, different treatment options tested, and a sound biomechanical treatment plan designed. This chapter presents several key functions of digital diagnostic procedures that are available to orthodontists who want to utilize digital technology in their practices. Advantages of using digital technology in the planning and implementation of orthodontic treatment are also presented. Four clinical cases are described to illustrate the benefits of using of three-dimensional digital planning for the diagnosis, decision-making process, and treatment of orthodontic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Plooij JM, Maal TJ, Haers P, Borstlap WA, Kuijpers-Jagtman AM, Bergé SJ. Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review. Int J Oral Maxillofac Surg. 2011;40(4):341–52.

    Article  PubMed  Google Scholar 

  2. Joda T, Gallucci GO. The virtual patient in dental medicine. Clin Oral Implants Res. 2015;26(6):725–6.

    Article  PubMed  Google Scholar 

  3. Kravitz ND, Groth C, Jones PE, Graham JW, Redmond WR. Intraoral digital scanners. J Clin Orthod. 2014;48(6):337–47.

    PubMed  Google Scholar 

  4. Figliuzzi M, Mangano F, Mangano C. A novel root analogue dental implant using CT scan and CAD/CAM: selective laser melting technology. Int J Oral Maxillofac Surg. 2012;41(7):858–62. https://doi.org/10.1016/j.ijom.2012.01.014.

    Article  PubMed  Google Scholar 

  5. Imburgia M, Logozzo S, Hauschild U, Veronesi G, Mangano C, Mangano FG. Accuracy of four intraoral scanners in oral implantology: a comparative in vitro study. BMC Oral Health. 2017;17(1):92.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fleming P, Marinho V, Johal A. Orthodontic measurements on digital study models compared with plaster models: a systematic review. Orthod Craniofac Res. 2011;14(1):1–16.

    Article  PubMed  Google Scholar 

  7. Kau CH, Littlefield J, Rainy N, Nguyen JT, Creed B. Evaluation of CBCT digital models and traditional models using the Little’s Index. Angle Orthod. 2010;80(3):435–9.

    Article  PubMed  Google Scholar 

  8. Jones P. The iTero optical scanner for use with Invisalign: a descriptive review. Dent Implantol Updat. 2008;19:1–4.

    Google Scholar 

  9. Martin CB, Chalmers EV, McIntyre GT, Cochrane H, Mossey PA. Orthodontic scanners: what’s available? J Orthod. 2015;42(2):136–43. https://doi.org/10.1179/1465313315Y.0000000001.

    Article  PubMed  Google Scholar 

  10. Luu NS, Nikolcheva LG, Retrouvey J-M, Flores-Mir C, El-Bialy T, Carey JP, et al. Linear measurements using virtual study models: a systematic review. Angle Orthod. 2012;82(6):1098–106.

    Article  PubMed  Google Scholar 

  11. Wiranto MG, Engelbrecht WP, Nolthenius HET, van der Meer WJ, Ren Y. Validity, reliability, and reproducibility of linear measurements on digital models obtained from intraoral and cone-beam computed tomography scans of alginate impressions. Am J Orthod Dentofac Orthop. 2013;143(1):140–7.

    Article  Google Scholar 

  12. Yilmaz H, Ozlu FC, Karadeniz C, Karadeniz EI. Efficiency and accuracy of three-dimensional models versus dental casts: a clinical study. Turk J Orthod. 2019;32(4):214–8. https://doi.org/10.5152/TurkJOrthod.2019.19034.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang F, Suh K-J, Lee K-M. Validity of intraoral scans compared with plaster models: an in-vivo comparison of dental measurements and 3D surface analysis. PLoS One. 2016;11(6):e0157713.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Joffe L. Current products and practices OrthoCAD™: digital models for a digital era. J Orthod. 2004;31(4):344–7.

    Article  PubMed  Google Scholar 

  15. Ciobota N-D. Standard tessellation language in rapid prototyping technology. National Institute of Research and Development for Mechatronics and Measurement Technique, Bucuresti, The Scientific Bulletin of Valahia University–Materials and Mechanics. 2012(7).

    Google Scholar 

  16. Valentan B, Brajlih T, Drstvensek I, Balic J. Basic solutions on shape complexity evaluation of STL data. J Achiev Mater Manuf Eng. 2008;26(1):73–80.

    Google Scholar 

  17. Hazeveld A, Huddleston Slater JJ, Ren Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am J Orthod Dentofac Orthop. 2014;145(1):108–15. https://doi.org/10.1016/j.ajodo.2013.05.011.

    Article  Google Scholar 

  18. Ventola CL. Medical applications for 3D printing: current and projected uses. Pharm Therap. 2014;39(10):704.

    Google Scholar 

  19. Sinthanayothin C, Tharanont W, editors. Orthodontics treatment simulation by teeth segmentation and setup. In: 2008 5th international conference on electrical engineering/electronics, computer, telecommunications and information technology, IEEE; 2008.

    Google Scholar 

  20. Lee S-H, Kim H-C, Hur S-M, Yang D-Y. STL file generation from measured point data by segmentation and Delaunay triangulation. Comput Aided Des. 2002;34(10):691–704.

    Article  Google Scholar 

  21. Yaqi M, Zhongke L, editors. Computer aided orthodontics treatment by virtual segmentation and adjustment. In: 2010 international conference on image analysis and signal processing, IEEE; 2010.

    Google Scholar 

  22. Yau H-T, Yang T-J, Chen Y-C. Tooth model reconstruction based upon data fusion for orthodontic treatment simulation. Comput Biol Med. 2014;48:8–16.

    Article  PubMed  Google Scholar 

  23. Keilig L, Piesche K, Jäger A, Bourauel C. Applications of surface–surface matching algorithms for determination of orthodontic tooth movements. Comput Methods Biomech Biomed Engin. 2003;6(5–6):353–9.

    Article  PubMed  Google Scholar 

  24. Smith RJ, Burstone CJ. Mechanics of tooth movement. Am J Orthod. 1984;85(4):294–307.

    Article  PubMed  Google Scholar 

  25. Burstone CJ, Pryputniewicz RJ. Holographic determination of centers of rotation produced by orthodontic forces. Am J Orthod. 1980;77(4):396–409.

    Article  PubMed  Google Scholar 

  26. Hennessy J, Al-Awadhi EA. Clear aligners generations and orthodontic tooth movement. J Orthod. 2016;43(1):68–76.

    Article  PubMed  Google Scholar 

  27. Kravitz ND, Kusnoto B, BeGole E, Obrez A, Agran B. How well does Invisalign work? A prospective clinical study evaluating the efficacy of tooth movement with Invisalign. Am J Orthod Dentofac Orthop. 2009;135(1):27–35.

    Article  Google Scholar 

  28. Chang YB, Xia JJ, Gateno J, Xiong Z, Zhou X, Wong ST. An automatic and robust algorithm of reestablishment of digital dental occlusion. IEEE Trans Med Imaging. 2010;29(9):1652–63. https://doi.org/10.1109/TMI.2010.2049526.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cheng C, Cheng X, Dai N, Liu Y, Fan Q, Hou Y, et al. Personalized orthodontic accurate tooth arrangement system with complete teeth model. J Med Syst. 2015;39(9):84.

    Article  PubMed  Google Scholar 

  30. Rodrigues MAF, Silva WB, Neto MEB, Gillies DF, Ribeiro IM. An interactive simulation system for training and treatment planning in orthodontics. Comput Graph. 2007;31(5):688–97.

    Article  Google Scholar 

  31. Im J, Cha J-Y, Lee K-J, Yu H-S, Hwang C-J. Comparison of virtual and manual tooth setups with digital and plaster models in extraction cases. Am J Orthod Dentofac Orthop. 2014;145(4):434–42.

    Article  Google Scholar 

  32. Qiu N, Fan R, You L, Jin X. An efficient and collision-free hole-filling algorithm for orthodontics. Vis Comput. 2013;29(6–8):577–86.

    Article  Google Scholar 

  33. Missier MS, George AM, Vardhan A. Estimating the amount of crowding in different occlusal patterns. Estimating the amount of crowding in different occlusal patterns. Int J Res Pharm Sci. 2018;9(4):1611–5.

    Google Scholar 

  34. Phan X, Ling PH. Clinical limitations of Invisalign. J Can Dent Assoc. 2007;73(3):263–6.

    PubMed  Google Scholar 

  35. Simon M, Keilig L, Schwarze J, Jung BA, Bourauel C. Treatment outcome and efficacy of an aligner technique–regarding incisor torque, premolar derotation and molar distalization. BMC Oral Health. 2014;14(1):68.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Morais JF, Melsen B, de Freitas KM, Castello Branco N, Garib DG, Cattaneo PM. Evaluation of maxillary buccal alveolar bone before and after orthodontic alignment without extractions: a cone beam computed tomographic study. Angle Orthod. 2018;88(6):748–56.

    Article  PubMed  Google Scholar 

  37. Creekmore TD, Kunik RL. Straight wire: the next generation. Am J Orthod Dentofac Orthop. 1993;104(1):8–20.

    Article  Google Scholar 

  38. Fiorelli G, Melsen B, Modica C. The design of custom orthodontic mechanics. Clin Orthod Res. 2000;3(4):210–9.

    Article  PubMed  Google Scholar 

  39. Burstone CJ, Koenig HA. Force systems from an ideal arch. Am J Orthod. 1974;65(3):270–89.

    Article  PubMed  Google Scholar 

  40. Chisari JR, McGorray SP, Nair M, Wheeler TT. Variables affecting orthodontic tooth movement with clear aligners. Am J Orthod Dentofac Orthop. 2014;145(4):S82–91.

    Article  Google Scholar 

  41. Rossini G, Parrini S, Castroflorio T, Deregibus A, Debernardi CL. Efficacy of clear aligners in controlling orthodontic tooth movement: a systematic review. Angle Orthod. 2015;85(5):881–9.

    Article  PubMed  Google Scholar 

  42. Bowman SJ, editor. Improving the predictability of clear aligners. Seminars in orthodontics. Saunders: Elsevier; 2017.

    Google Scholar 

  43. Morton J, Derakhshan M, Kaza S, Li C, editors. Design of the Invisalign system performance. Seminars in orthodontics. Elsevier; 2017.

    Google Scholar 

  44. Sachdeva RC, Aranha SL, Egan ME, Gross HT, Sachdeva NS, Frans Currier G, et al. Treatment time: SureSmile vs conventional. Orthod Art Pract Dentofac Enhanc. 2012;13:72.

    Google Scholar 

  45. Raphael E, Sandrik JL, Klapper L. Rotation of rectangular wire in rectangular molar tubes: part I. Am J Orthod. 1981;80(2):136–44.

    Article  PubMed  Google Scholar 

  46. Matasa CG. Bracket angulation as a function of its length in the canine distal movement. Am J Orthod Dentofac Orthop. 1996;110(2):178–84.

    Article  Google Scholar 

  47. Sachdeva R. Integrating digital and robotic technologies. Diagnosis, treatment planning, and therapeutics. In: Orthodontic current principles and techniques; 2012, 5.

    Google Scholar 

  48. Mah J, Sachdeva R. Computer-assisted orthodontic treatment: the SureSmile process. Am J Orthod Dentofac Orthop. 2001;120(1):85–7.

    Article  Google Scholar 

  49. Nguyen T, Jackson T, editors. 3D technologies for precision in orthodontics. Seminars in orthodontics. Elsevier; 2018.

    Google Scholar 

  50. Hales BM, Pronovost PJ. The checklist—a tool for error management and performance improvement. J Crit Care. 2006;21(3):231–5.

    Article  PubMed  Google Scholar 

  51. Almog D, Marin CS, Proskin HM, Cohen MJ, Kyrkanides S, Malmstrom H. The effect of esthetic consultation methods on acceptance of diastema-closure treatment plan: a pilot study. J Am Dent Assoc. 2004;135(7):875–81.

    Article  PubMed  Google Scholar 

  52. Morisky DE, Malotte CK, Choi P, Davidson P, Rigler S, Sugland B, et al. A patient education program to improve adherence rates with antituberculosis drug regimens. Health Educ Q. 1990;17(3):253–66.

    Article  PubMed  Google Scholar 

  53. Kokich VO Jr, Kinzer GA. Managing congenitally missing lateral incisors. Part I: canine substitution. J Esthet Restor Dent. 2005;17(1):5–10.

    Article  PubMed  Google Scholar 

  54. Kokich VO, Kinzer GA, Janakievski J. Congenitally missing maxillary lateral incisors: restorative replacement. Am J Orthod Dentofac Orthop. 2011;139(4):443.

    Article  Google Scholar 

  55. Nanda R, Uribe FA, Yadav S. Temporary anchorage devices in orthodontics e-book. Elsevier Health Sciences; 2019.

    Google Scholar 

  56. Brough E, Donaldson AN, Naini FB. Canine substitution for missing maxillary lateral incisors: the influence of canine morphology, size, and shade on perceptions of smile attractiveness. Am J Orthod Dentofac Orthop. 2010;138(6):705.e1–9.

    Article  Google Scholar 

  57. Schneider U, Moser L, Fornasetti M, Piattella M, Siciliani G. Esthetic evaluation of implants vs canine substitution in patients with congenitally missing maxillary lateral incisors: are there any new insights? Am J Orthod Dentofac Orthop. 2016;150(3):416–24.

    Article  Google Scholar 

  58. Oliver R, Mannion J, Robinson J. Morphology of the maxillary lateral incisor in cases of unilateral impaction of the maxillary canine. Br J Orthod. 1989;16(1):9–16.

    Article  PubMed  Google Scholar 

  59. Mavreas D, Athanasiou AE. Factors affecting the duration of orthodontic treatment: a systematic review. Eur J Orthod. 2008;30(4):386–95.

    Article  PubMed  Google Scholar 

  60. Dalessandri D, Migliorati M, Visconti L, Contardo L, Kau CH, Martin C. KPG index versus OPG measurements: a comparison between 3D and 2D methods in predicting treatment duration and difficulty level for patients with impacted maxillary canines. Biomed Res Int. 2014;2014:537620.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Eslami E, Barkhordar H, Abramovitch K, Kim J, Masoud MI. Cone-beam computed tomography vs conventional radiography in visualization of maxillary impacted-canine localization: a systematic review of comparative studies. Am J Orthod Dentofac Orthop. 2017;151(2):248–58.

    Article  Google Scholar 

  62. Alqerban A, Jacobs R, Lambrechts P, Loozen G, Willems G. Root resorption of the maxillary lateral incisor caused by impacted canine: a literature review. Clin Oral Investig. 2009;13(3):247–55.

    Article  PubMed  Google Scholar 

  63. Haney E, Gansky SA, Lee JS, Johnson E, Maki K, Miller AJ, et al. Comparative analysis of traditional radiographs and cone-beam computed tomography volumetric images in the diagnosis and treatment planning of maxillary impacted canines. Am J Orthod Dentofac Orthop. 2010;137(5):590–7.

    Article  Google Scholar 

  64. Kapila S, Conley R, Harrell W Jr. The current status of cone beam computed tomography imaging in orthodontics. Dentomaxillofac Radiol. 2011;40(1):24–34.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Suri S, Utreja A, Rattan V. Orthodontic treatment of bilaterally impacted maxillary canines in an adult. Am J Orthod Dentofac Orthop. 2002;122(4):429–37.

    Article  Google Scholar 

  66. Chandhoke TK, Agarwal S, Feldman J, Shah RA, Upadhyay M, Nanda R. An efficient biomechanical approach for the management of an impacted maxillary central incisor. Am J Orthod Dentofac Orthop. 2014;146(2):249–54.

    Article  Google Scholar 

  67. Graber LW, Vanarsdall RL, Vig KW, Huang GJ. Orthodontics-E-book: current principles and techniques. Elsevier Health Sciences; 2016.

    Google Scholar 

  68. Kinzinger GS, Fritz UB, Sander F-G, Diedrich PR. Efficiency of a pendulum appliance for molar distalization related to second and third molar eruption stage. Am J Orthod Dentofac Orthop. 2004;125(1):8–23.

    Article  Google Scholar 

  69. Karlsson I, Bondemark L. Intraoral maxillary molar distalization. Angle Orthod. 2006;76(6):923–9.

    Article  PubMed  Google Scholar 

  70. Hamilton C, Saltaji H, Preston C, Flores-Mir C, Tabbaa S. Adolescent patients’ experience with the Carriere distalizer appliance. Eur J Paediatr Dent. 2013;14(3):219–24.

    PubMed  Google Scholar 

  71. Luppanapornlarp S, Johnston LE Jr. The effects of premolar-extraction: a long-term comparison of outcomes in “clear-cut” extraction and nonextraction class II patients. Angle Orthod. 1993;63(4):257–72.

    PubMed  Google Scholar 

  72. Xie X, Wang L, Wang A. Artificial neural network modeling for deciding if extractions are necessary prior to orthodontic treatment. Angle Orthod. 2010;80(2):262–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Retrouvey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Retrouvey, JM., Vandersluis, Y.R., Kaku, J., Vasudavan, S. (2021). Three-Dimensional Treatment Simulation for Predictable Orthodontic Treatment Planning and Implementation. In: Retrouvey, JM., Abdallah, MN. (eds) 3D Diagnosis and Treatment Planning in Orthodontics. Springer, Cham. https://doi.org/10.1007/978-3-030-57223-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57223-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57222-8

  • Online ISBN: 978-3-030-57223-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics