Skip to main content

Explaining Non-bisimilarity in a Coalgebraic Approach: Games and Distinguishing Formulas

  • Conference paper
  • First Online:
Coalgebraic Methods in Computer Science (CMCS 2020)

Abstract

Behavioural equivalences can be characterized via bisimulation, modal logics, and spoiler-duplicator games. In this paper we work in the general setting of coalgebra and focus on generic algorithms for computing the winning strategies of both players in a bisimulation game. The winning strategy of the spoiler (if it exists) is then transformed into a modal formula that distinguishes the given non-bisimilar states. The modalities required for the formula are also synthesized on-the-fly, and we present a recipe for re-coding the formula with different modalities, given by a separating set of predicate liftings. Both the game and the generation of the distinguishing formulas have been implemented in a tool called T-Beg.

Work by the first two authors supported by the DFG project BEMEGA (KO 2185/7-2). Work by the third author forms part of the DFG project ProbDL2 (SCHR 1118/6-2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available at: https://www.uni-due.de/theoinf/research/tools_tbeg.php.

  2. 2.

    For a function \(f:X\rightarrow Y\), \( ker (f) = \{(x_0,x_1)\mid x_0,x_1\in X, f(x_0) = f(x_1)\} \subseteq X\times X\).

  3. 3.

    http://www.brics.dk/bisim/.

  4. 4.

    https://www.jeroenkeiren.nl/blog/on-games-and-simulations/.

  5. 5.

    https://www.nuget.org/packages/Microsoft.Msagl.GraphViewerGDI.

References

  1. Balan, A., Kurz, A.: Finitary functors: from Set to Preord and Poset. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 85–99. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22944-2_7

    Chapter  MATH  Google Scholar 

  2. Baltag, A.: Truth-as-simulation: towards a coalgebraic perspective on logic and games. Technical report SEN-R9923, CWI, November 1999

    Google Scholar 

  3. Baltag, A.: A logic for coalgebraic simulation. In: Coalgebraic Methods in Computer Science, CMCS 2000. ENTCS, vol. 33, pp. 42–60. Elsevier (2000)

    Google Scholar 

  4. Barr, M.: Relational algebras. In: MacLane, S., et al. (eds.) Reports of the Midwest Category Seminar IV. Lecture Notes in Mathematics, vol. 137, pp. 39–55. Springer, Heidelberg (1970). https://doi.org/10.1007/BFb0060439

    Chapter  Google Scholar 

  5. Chatzikokolakis, K., Gebler, D., Palamidessi, C., Xu, L.: Generalized bisimulation metrics. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 32–46. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6_4

    Chapter  Google Scholar 

  6. Cleveland, R.: On automatically explaining bisimulation inequivalence. In: Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 364–372. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0023750

    Chapter  Google Scholar 

  7. Deifel, H.-P., Milius, S., Schröder, L., Wißmann, T.: Generic partition refinement and weighted tree automata. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 280–297. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30942-8_18

    Chapter  Google Scholar 

  8. Desharnais, J., Laviolette, F., Tracol, M.: Approximate analysis of probabilistic processes: logic, simulation and games. In: Proceedings of QEST 2008, pp. 264–273. IEEE (2008)

    Google Scholar 

  9. Dorsch, U., Milius, S., Schröder, L., Wißmann, T.: Efficient coalgebraic partition refinement. In: Proceedings of CONCUR 2017. LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  10. de FrutosEscrig, D., Keiren, J.J.A., Willemse, T.A.C.: Games for bisimulations and abstraction (2016). https://arxiv.org/abs/1611.00401, arXiv:1611.00401

  11. Gorín, D., Schröder, L.: Simulations and bisimulations for coalgebraic modal logics. In: Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol. 8089, pp. 253–266. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40206-7_19

    Chapter  MATH  Google Scholar 

  12. Hansen, H., Kupke, C.: A coalgebraic perspective on monotone modal logic. In: Coalgebraic Methods in Computer Science, CMCS 2004. LNCS, vol. 106, pp. 121–143. Elsevier (2004)

    Google Scholar 

  13. Hansen, H.H.: Monotonic modal logics. Master’s thesis, University of Amsterdam (2003)

    Google Scholar 

  14. Hennessy, M., Milner, A.: Algebraic laws for nondeterminism and concurrency. J. ACM 32(1), 137–161 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three problems of equivalence. Inf. Comput. 86, 43–68 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Komorida, Y., Katsumata, S.Y., Hu, N., Klin, B., Hasuo, I.: Codensity games for bisimilarity. In: Proceedings of LICS 2019, pp. 1–13. ACM (2019)

    Google Scholar 

  17. König, B., Küpper, S.: A generalized partition refinement algorithm, instantiated to language equivalence checking for weighted automata. Soft Comput. 22(4), 1103–1120 (2018). https://doi.org/10.1007/s00500-016-2363-z

    Article  MATH  Google Scholar 

  18. König, B., Mika-Michalski, C.: (Metric) Bisimulation games and real-valued modal logics for coalgebras. In: Proceedings of CONCUR 2018. LIPIcs, vol. 118, pp. 37:1–37:17. Schloss Dagstuhl - Leibniz Center for Informatics (2018)

    Google Scholar 

  19. König, B., Mika-Michalski, C., Schröder, L.: Explaining non-bisimilarity in a coalgebraic approach: games and distinguishing formulas (2020). https://arxiv.org/abs/2002.11459, arXiv:2002.11459

  20. Kracht, M., Wolter, F.: Normal monomodal logics can simulate all others. J. Symb. Log. 64(1), 99–138 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kupke, C.: Terminal sequence induction via games. In: Bosch, P., Gabelaia, D., Lang, J. (eds.) TbiLLC 2007. LNCS (LNAI), vol. 5422, pp. 257–271. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00665-4_21

    Chapter  Google Scholar 

  22. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pattinson, D.: Coalgebraic modal logic: soundness, completeness and decidability of local consequence. Theoret. Comput. Sci. 309(1), 177–193 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction. Notre Dame J. Form. Log. 45, 19–33 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rutten, J.: Universal coalgebra: a theory of systems. Theoret. Comput. Sci. 249(1), 3–80 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schröder, L.: Expressivity of coalgebraic modal logic: the limits and beyond. Theoret. Comput. Sci. 390(2), 230–247 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stirling, C.: Bisimulation, modal logic and model checking games. Log. J. IGPL 7(1), 103–124 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Trnková, V.: General theory of relational automata. Fundam. Inform. 3, 189–234 (1980)

    MathSciNet  MATH  Google Scholar 

  29. Wißmann, T.: Personal communication

    Google Scholar 

  30. Wißmann, T.: Coalgebraic semantics and minimization in sets and beyond. Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2020)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for the careful reading of the paper and their valuable comments. Furthermore we thank Thorsten Wißmann and Sebastian Küpper for inspiring discussions on (efficient) coalgebraic partition refinement and zippability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Mika-Michalski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

König, B., Mika-Michalski, C., Schröder, L. (2020). Explaining Non-bisimilarity in a Coalgebraic Approach: Games and Distinguishing Formulas. In: Petrişan, D., Rot, J. (eds) Coalgebraic Methods in Computer Science. CMCS 2020. Lecture Notes in Computer Science(), vol 12094. Springer, Cham. https://doi.org/10.1007/978-3-030-57201-3_8

Download citation

Publish with us

Policies and ethics