Skip to main content

De Finetti’s Construction as a Categorical Limit

  • Conference paper
  • First Online:
Coalgebraic Methods in Computer Science (CMCS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12094))

Included in the following conference series:

Abstract

This paper reformulates a classical result in probability theory from the 1930s in modern categorical terms: de Finetti’s representation theorem is redescribed as limit statement for a chain of finite spaces in the Kleisli category of the Giry monad. This new limit is used to identify among exchangeable coalgebras the final one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackerman, N., Freer, C., Roy, D.: Exchangeable random primitives. In: Proceedings of PPS 2016 (2016)

    Google Scholar 

  2. Dahlqvist, F., Danos, V., Garnier, I.: Robustly parameterised higher-order probabilistic models. In: Desharnais, J., Jagadeesan, R. (eds.) CONCUR 2016 – Concurrency Theory. LIPIcs, vol. 59, pp. 23:1–23:15. Schloss Dagstuhl (2016)

    Google Scholar 

  3. Dahlqvist, F., Kozen, D.: Semantics of higher-order probabilistic programs with conditioning. In: Principles of Programming Languages, pp. 57:1–57:29. ACM Press (2020). https://doi.org/10.1145/3371125

  4. Danos, V., Garnier, I.: Dirichlet is natural. In: Ghica, D. (ed.) Mathematical Foundations of Programming Semantics, number 319 in Electronic Notes in Theoretical Computer Science, pp. 137–164. Elsevier, Amsterdam (2015)

    Google Scholar 

  5. de Finetti, B.: Funzione caratteristica di un fenomeno aleatorio. Memorie della R. Accademia Nazionale dei Lincei, IV, fasc. 5, 86–113 (1930). www.brunodefinetti.it/Opere/funzioneCaratteristica.pdf

  6. Feller, W.: An Introduction to Probability Theory and Its applications, vol. II. Wiley, Hoboken (1970)

    MATH  Google Scholar 

  7. Fritz, T.: A synthetic approach to Markov kernels, conditional independence, and theorems on sufficient statistics. arxiv.org/abs/1908.07021 (2019)

  8. Fritz, T., Rischel, E.: The zero-one laws of Kolmogorov and Hewitt-Savage in categorical probability. arxiv.org/abs/1912.02769 (2019)

  9. Hamano, M.: A linear exponential comonad in s-finite transition kernels and probabilistic coherent spaces. arxiv:1909.07589, September 2019

  10. Hausdorff, F.: Summationsmethoden und Momentfolgen I. Math. Zeitschr. 9, 74–109 (1921)

    Article  MathSciNet  Google Scholar 

  11. Heunen, C., Kammar, O., Staton, S., Yang, H.: A convenient category for higher-order probability theory. In: Logic in Computer Science, pp. 1–12. IEEE Computer Society (2017)

    Google Scholar 

  12. Jacobs, B.: Structured probabilistic reasoning (2019, forthcoming book). http://www.cs.ru.nl/B.Jacobs/PAPERS/ProbabilisticReasoning.pdf

  13. Jacobs, B.: A channel-based perspective on conjugate priors. Math. Struct. Comput. Sci. 30(1), 44–61 (2020)

    Article  MathSciNet  Google Scholar 

  14. Kerstan, H., König, B.: Coalgebraic trace semantics for probabilistic transition systems based on measure theory. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 410–424. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32940-1_29

    Chapter  MATH  Google Scholar 

  15. Kleiber, C., Stoyanov, J.: Multivariate distributions and the moment problem. J. Multivar. Anal. 113, 7–18 (2013)

    Article  MathSciNet  Google Scholar 

  16. Klenke, A.: Probability Theory. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5361-0

    Book  MATH  Google Scholar 

  17. Ścibior, A., et al.: Denotational validation of higher-order Bayesian inference. In: Principles of Programming Languages, pp. 60:1–60:29. ACM Press (2018)

    Google Scholar 

  18. Staton, S., Stein, D., Yang, H., Ackerman, N., Freer, C., Roy, D.: The Beta-Bernoulli process and algebraic effects. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D., Sannella, D. (eds.) International Colloquium on Automata, Languages and Programming. LIPIcs, vol. 107, pp. 141:1–141:15. Schloss Dagstuhl (2018)

    Google Scholar 

Download references

Acknowledgements

Staton is supported by a Royal Society Fellowship, and has enjoyed discussions about formulations of de Finetti’s theorem with many people including coauthors on  [18].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Jacobs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jacobs, B., Staton, S. (2020). De Finetti’s Construction as a Categorical Limit. In: Petrişan, D., Rot, J. (eds) Coalgebraic Methods in Computer Science. CMCS 2020. Lecture Notes in Computer Science(), vol 12094. Springer, Cham. https://doi.org/10.1007/978-3-030-57201-3_6

Download citation

Publish with us

Policies and ethics