Skip to main content

Network Propagation for the Analysis of Multi-omics Data

  • 421 Accesses

Abstract

Network propagation has been used as the state-of-the-art network analysis method which can overcome the limitations of the existing methods. The area where network propagation truly shines is the application to multi-omics data. It integrates interactome data with other omics data to be utilized for further analyses. In multi-omics data, there are multiple levels of complexity for which network propagation techniques can be used effectively. Here, we categorized recent network propagation research works in bioinformatics into three levels: DNA, RNA, and pathway levels. At the DNA level, network propagation is applicable for genome data analysis. In particular, for the analysis of genome-wide mutation profiles in cancer, network propagation has been successfully used to detect subnetworks, driver mutation profiles, and cancer subtypes. At the RNA-level analysis of transcriptome data, gene expression information can be propagated to obtain valuable condition-specific information such as the ranking of how genes react to certain environments. Such derived information can be utilized in differentially expressed gene detection, gene prioritization, and hypothesis testing. Transcriptome data can be analyzed at the biological pathway level by utilizing network propagation techniques. With graph convolutional network techniques, network propagation can be exploited for a disease subtype classification problem where pathway information is used to characterize biological mechanisms of a disease.

Keywords

  • Network propagation
  • Multi-omics
  • Genome
  • Transcriptome
  • Pathway

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-57173-3_9
  • Chapter length: 33 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-57173-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4
Fig. 9.5
Fig. 9.6
Fig. 9.7

References

  1. Cowen, L., Ideker, T., Raphael, B.J., Sharan, R.: Network propagation: a universal amplifier of genetic associations. Nat. Rev. Genet. 18(9), 551 (2017)

    CAS  PubMed  CrossRef  Google Scholar 

  2. Biran, H., Kupiec, M., Sharan, R.: Comparative analysis of normalization methods for network propagation. Front. Genet. 10, 4 (2019)

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  3. Stratton, M.R., Campbell, P.J., Futreal, P.A.: The cancer genome. Nature 458(7239), 719 (2009)

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  4. Leiserson, M.D., Vandin, F., Wu, H.T., Dobson, J.R., Eldridge, J.V., Thomas, J.L., Papoutsaki, A., Kim, Y., Niu, B., McLellan, M., et al.: Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nature Genetics 47(2), 106 (2015)

    CAS  PubMed  CrossRef  Google Scholar 

  5. Zhang, W., Ma, J., Ideker, T.: Classifying tumors by supervised network propagation. Bioinformatics 34(13), i484–i493 (2018)

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  6. Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A., Kinzler, K.W.: Cancer genome landscapes. Science 339(6127), 1546–1558 (2013)

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  7. Vandin, F., Clay, P., Upfal, E., Raphael, B.J.: Discovery of mutated subnetworks associated with clinical data in cancer. In: Biocomputing 2012, pp. 55–66. World Scientific (2012)

    Google Scholar 

  8. Grasso, C.S., Wu, Y.M., Robinson, D.R., Cao, X., Dhanasekaran, S.M., Khan, A.P., Quist, M.J., Jing, X., Lonigro, R.J., Brenner, J.C., et al.: The mutational landscape of lethal castration-resistant prostate cancer. Nature 487(7406), 239 (2012)

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  9. Ye, J., Pavlicek, A., Lunney, E.A., Rejto, P.A., Teng, C.H.: Statistical method on nonrandom clustering with application to somatic mutations in cancer. BMC Bioinformatics 11(1), 11 (2010)

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  10. Ryslik, G.A., Cheng, Y., Cheung, K.H., Modis, Y., Zhao, H.: Utilizing protein structure to identify non-random somatic mutations. BMC Bioinformatics 14(1), 190 (2013)

    PubMed  PubMed Central  CrossRef  Google Scholar 

  11. Martincorena, I., Campbell, P.J.: Somatic mutation in cancer and normal cells. Science 349(6255), 1483–1489 (2015)

    CAS  PubMed  CrossRef  Google Scholar 

  12. Greenman, C., Stephens, P., Smith, R., Dalgliesh, G.L., Hunter, C., Bignell, G., Davies, H., Teague, J., Butler, A., Stevens, C., et al.: Patterns of somatic mutation in human cancer genomes. Nature 446(7132), 153 (2007)

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  13. Hofree, M., Shen, J.P., Carter, H., Gross, A., Ideker, T.: Network-based stratification of tumor mutations. Nature Methods 10(11), 1108 (2013)

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  14. Wang, S., Ma, J., Zhang, W., Shen, J.P., Huang, J., Peng, J., Ideker, T.: Typing tumors using pathways selected by somatic evolution. Nature Communications 9(1), 4159 (2018)

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  15. Brennan, C.W., Verhaak, R.G., McKenna, A., Campos, B., Noushmehr, H., Salama, S.R., Zheng, S., Chakravarty, D., Sanborn, J.Z., Berman, S.H., et al.: The somatic genomic landscape of glioblastoma. Cell 155(2), 462–477 (2013)

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  16. Verhaak, R.G., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D., Miller, C.R., Ding, L., Golub, T., Mesirov, J.P., et al.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in pdgfra, idh1, egfr, and nf1. Cancer Cell 17(1), 98–110 (2010)

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  17. Prat, A., Perou, C.M.: Deconstructing the molecular portraits of breast cancer. Molecular Oncology 5(1), 5–23 (2011)

    CAS  PubMed  CrossRef  Google Scholar 

  18. Lee, I., Blom, U.M., Wang, P.I., Shim, J.E., Marcotte, E.M.: Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Research 21(7), 1109–1121 (2011)

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  19. Li, Y., Li, J.: Disease gene identification by random walk on multigraphs merging heterogeneous genomic and phenotype data. In: BMC Genomics, vol. 13, p. S27. BioMed Central (2012)

    Google Scholar 

  20. Isik, Z., Baldow, C., Cannistraci, C.V., Schroeder, M.: Drug target prioritization by perturbed gene expression and network information. Scientific Reports 5, 17,417 (2015)

    CAS  CrossRef  Google Scholar 

  21. Ma, X., Lee, H., Wang, L., Sun, F.: Cgi: a new approach for prioritizing genes by combining gene expression and protein–protein interaction data. Bioinformatics 23(2), 215–221 (2006)

    PubMed  CrossRef  CAS  Google Scholar 

  22. Nitsch, D., Tranchevent, L.C., Thienpont, B., Thorrez, L., Van Esch, H., Devriendt, K., Moreau, Y.: Network analysis of differential expression for the identification of disease-causing genes. PLoS ONE 4(5), e5526 (2009)

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  23. Nitsch, D., Gonçalves, J.P., Ojeda, F., De Moor, B., Moreau, Y.: Candidate gene prioritization by network analysis of differential expression using machine learning approaches. BMC Bioinformatics 11(1), 460 (2010)

    PubMed  PubMed Central  CrossRef  Google Scholar 

  24. Vanunu, O., Magger, O., Ruppin, E., Shlomi, T., Sharan, R.: Associating genes and protein complexes with disease via network propagation. PLoS Comput. Biol. 6(1), e1000,641 (2010)

    CrossRef  CAS  Google Scholar 

  25. Singh-Blom, U.M., Natarajan, N., Tewari, A., Woods, J.O., Dhillon, I.S., Marcotte, E.M.: Prediction and validation of gene-disease associations using methods inspired by social network analyses. PLoS ONE 8(5), e58,977 (2013)

    CAS  CrossRef  Google Scholar 

  26. Erten, S., Bebek, G., Ewing, R.M., Koyutürk, M.: Dada: degree-aware algorithms for network-based disease gene prioritization. BioData Mining 4(1), 19 (2011)

    PubMed  PubMed Central  CrossRef  Google Scholar 

  27. Smedley, D., Köhler, S., Czeschik, J.C., Amberger, J., Bocchini, C., Hamosh, A., Veldboer, J., Zemojtel, T., Robinson, P.N.: Walking the interactome for candidate prioritization in exome sequencing studies of mendelian diseases. Bioinformatics 30(22), 3215–3222 (2014)

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  28. Guney, E., Oliva, B.: Exploiting protein-protein interaction networks for genome-wide disease-gene prioritization. PLoS ONE 7(9), e43,557 (2012)

    CAS  CrossRef  Google Scholar 

  29. Gottlieb, A., Magger, O., Berman, I., Ruppin, E., Sharan, R.: Principle: a tool for associating genes with diseases via network propagation. Bioinformatics 27(23), 3325–3326 (2011)

    CAS  PubMed  CrossRef  Google Scholar 

  30. Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 37(suppl_2), W305–W311 (2009)

    Google Scholar 

  31. Köhler, S., Bauer, S., Horn, D., Robinson, P.N.: Walking the interactome for prioritization of candidate disease genes. Am. J. Hum. Genet. 82(4), 949–958 (2008)

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  32. Ahn, H., Jo, K., Jung, D., Park, M., Hur, J., Jung, W., Kim, S.: Propanet: Time-varying condition-specific transcriptional network construction by network propagation. Front. Plant Sci. 10, 698 (2019)

    PubMed  PubMed Central  CrossRef  Google Scholar 

  33. Li, Y., Fan, J., Wang, Y., Tan, K.L.: Influence maximization on social graphs: A survey. IEEE Trans. Knowl. Data Eng. (2018)

    Google Scholar 

  34. Li, F.H., Li, C.T., Shan, M.K.: Labeled influence maximization in social networks for target marketing. In: 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing, pp. 560–563. IEEE, Boston (2011). https://doi.org/10.1109/PASSAT/SocialCom.2011.152

  35. Jin, J., Tian, F., Yang, D.C., Meng, Y.Q., Kong, L., Luo, J., Gao, G.: PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 45(D1), D1040–D1045 (2016). https://doi.org/10.1093/nar/gkw982

  36. Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., Smyth, G.K.: limma powers differential expression analyses for rna-sequencing and microarray studies. Nucleic Acids Res. 43(7), e47–e47 (2015)

    Google Scholar 

  37. Leng, N., Dawson, J.A., Thomson, J.A., Ruotti, V., Rissman, A.I., Smits, B.M., Haag, J.D., Gould, M.N., Stewart, R.M., Kendziorski, C.: Ebseq: an empirical bayes hierarchical model for inference in rna-seq experiments. Bioinformatics 29(8), 1035–1043 (2013)

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  38. Love, M.I., Huber, W., Anders, S.: Moderated estimation of fold change and dispersion for rna-seq data with deseq2. Genome Biology 15(12), 550 (2014)

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  39. Robinson, M.D., McCarthy, D.J., Smyth, G.K.: edger: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1), 139–140 (2010)

    Google Scholar 

  40. Moon, J.H., Lee, S., Pak, M., Hur, B., Kim, S.: MLDEG: A Machine Learning Approach to Identify Differentially Expressed Genes Using Network Property and Network Propagation. IEEE Transactions on Computational Biology and Bioinformatics (under review)

    Google Scholar 

  41. Zhang, W., Johnson, N., Wu, B., Kuang, R.: Signed network propagation for detecting differential gene expressions and dna copy number variations. In: Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine, pp. 337–344. ACM (2012)

    Google Scholar 

  42. Fonseca, S.G., Gromada, J., Urano, F.: Endoplasmic reticulum stress and pancreatic β-cell death. Trends Endocrinol. Metab. 22(7), 266–274 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Negi, S., Park, S.H., Jetha, A., Aikin, R., Tremblay, M., Paraskevas, S.: Evidence of endoplasmic reticulum stress mediating cell death in transplanted human islets. Cell Transplantation 21(5), 889–900 (2012)

    PubMed  CrossRef  Google Scholar 

  44. Lau, J., Henriksnäs, J., Svensson, J., Carlsson, P.O.: Oxygenation of islets and its role in transplantation. Curr. Opin. Organ Transplant. 14(6), 688–693 (2009)

    PubMed  CrossRef  Google Scholar 

  45. Zheng, X., Wang, X., Ma, Z., Sunkari, V.G., Botusan, I., Takeda, T., Björklund, A., Inoue, M., Catrina, S., Brismar, K., et al.: Acute hypoxia induces apoptosis of pancreatic β-cell by activation of the unfolded protein response and upregulation of chop. Cell Death Dis. 3(6), e322 (2012)

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  46. Pugliese, A., Reijonen, H.K., Nepom, J., Burke III, G.W.: Recurrence of autoimmunity in pancreas transplant patients: research update. Diabetes Management (London, England) 1(2), 229 (2011)

    Google Scholar 

  47. Lee, Y., Ravazzola, M., Park, B.H., Bashmakov, Y.K., Orci, L., Unger, R.H.: Metabolic mechanisms of failure of intraportally transplanted pancreatic β-cells in rats: role of lipotoxicity and prevention by leptin. Diabetes 56(9), 2295–2301 (2007)

    CAS  PubMed  CrossRef  Google Scholar 

  48. Leitão, C.B., Bernetti, K., Tharavanij, T., Cure, P., Lauriola, V., Berggren, P.O., Ricordi, C., Alejandro, R.: Lipotoxicity and decreased islet graft survival. Diabetes Care 33(3), 658–660 (2010)

    PubMed  CrossRef  CAS  Google Scholar 

  49. Barlow, A.D., Nicholson, M.L., Herbert, T.P.: Evidence for rapamycin toxicity in pancreatic β-cells and a review of the underlying molecular mechanisms. Diabetes 62(8), 2674–2682 (2013)

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  50. Drachenberg, C.B., Klassen, D.K., Weir, M.R., Wiland, A., Fink, J.C., Bartlett, S.T., Cangro, C.B., Blahut, S., Papadimitriou, J.C.: Islet cell damage associated with tacrolimus and cyclosporine: Morphological features in pancreas allograft biopsies and clinical correlation1. Transplantation 68(3), 396–402 (1999)

    CAS  PubMed  CrossRef  Google Scholar 

  51. Kim, H.J., Moon, J.H., Chung, H., Shin, J.S., Kim, B., Kim, J.M., Kim, J.S., Yoon, I.H., Min, B.H., Kang, S.J., et al.: Bioinformatic analysis of peripheral blood rna-sequencing sensitively detects the cause of late graft loss following overt hyperglycemia in pig-to-nonhuman primate islet xenotransplantation. Scientific Reports 9(1), 1–11 (2019)

    CrossRef  CAS  Google Scholar 

  52. Rickels, M.R., Collins, H.W., Naji, A.: Amyloid and transplanted islets. New Engl. J. Med. 359(25), 2729 (2008)

    CAS  PubMed  CrossRef  Google Scholar 

  53. Potter, K., Abedini, A., Marek, P., Klimek, A., Butterworth, S., Driscoll, M., Baker, R., Nilsson, M., Warnock, G., Oberholzer, J., et al.: Islet amyloid deposition limits the viability of human islet grafts but not porcine islet grafts. Proc. Natl. Acad. Sci. 107(9), 4305–4310 (2010)

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  54. Westermark, G.T., Westermark, P., Berne, C., Korsgren, O.: Widespread amyloid deposition in transplanted human pancreatic islets. New Engl. J. Med. 359(9), 977–979 (2008)

    CAS  PubMed  CrossRef  Google Scholar 

  55. Kim, J.W., Yoon, K.H.: Glucolipotoxicity in pancreatic β-cells. Diabetes Metab. J. 35(5), 444–450 (2011)

    PubMed  PubMed Central  CrossRef  Google Scholar 

  56. Brown, M.S., Goldstein, J.L.: The srebp pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89(3), 331–340 (1997)

    CAS  PubMed  CrossRef  Google Scholar 

  57. Brown, M.S., Goldstein, J.L.: Sterol regulatory element binding proteins (srebps): controllers of lipid synthesis and cellular uptake. Nutrition Reviews 56(suppl_1), S1–S3 (1998)

    Google Scholar 

  58. Kakuma, T., Lee, Y., Higa, M., Wang, Z.w., Pan, W., Shimomura, I., Unger, R.H.: Leptin, troglitazone, and the expression of sterol regulatory element binding proteins in liver and pancreatic islets. Proc. Natl. Acad. Sci. 97(15), 8536–8541 (2000)

    Google Scholar 

  59. Szklarczyk, D., Morris, J.H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N.T., Roth, A., Bork, P., et al.: The string database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 (2016). gkw937

    Google Scholar 

  60. Kestler, H.A., Müller, A., Gress, T.M., Buchholz, M.: Generalized venn diagrams: a new method of visualizing complex genetic set relations. Bioinformatics 21(8), 1592–1595 (2004)

    PubMed  CrossRef  CAS  Google Scholar 

  61. Martin, B., Chadwick, W., Yi, T., Park, S.S., Lu, D., Ni, B., Gadkaree, S., Farhang, K., Becker, K.G., Maudsley, S.: Vennture–a novel venn diagram investigational tool for multiple pharmacological dataset analysis. PLoS ONE 7(5), e36,911 (2012)

    CAS  CrossRef  Google Scholar 

  62. Kestler, H.A., Müller, A., Kraus, J.M., Buchholz, M., Gress, T.M., Liu, H., Kane, D.W., Zeeberg, B.R., Weinstein, J.N.: Vennmaster: area-proportional euler diagrams for functional go analysis of microarrays. BMC Bioinformatics 9(1), 67 (2008)

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  63. Chen, H., Boutros, P.C.: Venndiagram: a package for the generation of highly-customizable venn and euler diagrams in r. BMC Bioinformatics 12(1), 35 (2011)

    PubMed  PubMed Central  CrossRef  Google Scholar 

  64. Heberle, H., Meirelles, G.V., da Silva, F.R., Telles, G.P., Minghim, R.: Interactivenn: a web-based tool for theanalysis of sets through venn diagrams. In: Embrapa Informática Agropecuária-Artigo em anais de congresso (ALICE). BMC Bioinformatics, v. 16, p. 1–7 (2015)

    CrossRef  Google Scholar 

  65. Hulsen, T., de Vlieg, J., Alkema, W.: Biovenn–a web application for the comparison and visualization of biological lists using area-proportional venn diagrams. BMC Genomics 9(1), 488 (2008)

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  66. Wang, Y., Thilmony, R., Gu, Y.Q.: Netvenn: an integrated network analysis web platform for gene lists. Nucleic Acids Res. 42(W1), W161–W166 (2014)

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  67. Jeggari, A., Alekseenko, Z., Petrov, I., Dias, J.M., Ericson, J., Alexeyenko, A.: Evinet: a web platform for network enrichment analysis with flexible definition of gene sets. Nucleic Acids Res. 46(W1), W163–W170 (2018)

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  68. Hur, B., Kang, D., Lee, S., Moon, J.H., Lee, G., Kim, S.: Venn-dianet: venn diagram based network propagation analysis framework for comparing multiple biological experiments. BMC Bioinformatics 20(23), 1–12 (2019)

    Google Scholar 

  69. Li, Y., Patra, J.C.: Genome-wide inferring gene–phenotype relationship by walking on the heterogeneous network. Bioinformatics 26(9), 1219–1224 (2010)

    CAS  PubMed  CrossRef  Google Scholar 

  70. Chen, J., Aronow, B.J., Jegga, A.G.: Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics 10(1), 73 (2009)

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  71. Chen, J.Y., Shen, C., Sivachenko, A.Y.: Mining alzheimer disease relevant proteins from integrated protein interactome data. In: Biocomputing 2006, pp. 367–378. World Scientific (2006)

    Google Scholar 

  72. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K.P., et al.: String v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43(D1), D447–D452 (2014)

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  73. Dirmeier, S.: diffusr: Network Diffusion Algorithms (2018). https://CRAN.R-project.org/package=diffusr. R package version 0.1.4

  74. Edgar, R., Domrachev, M., Lash, A.E.: Gene expression omnibus: Ncbi gene expression and hybridization array data repository. Nucleic Acids Res. 30(1), 207–210 (2002)

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  75. Spurgeon, M.E., den Boon, J.A., Horswill, M., Barthakur, S., Forouzan, O., Rader, J.S., Beebe, D.J., Roopra, A., Ahlquist, P., Lambert, P.F.: Human papillomavirus oncogenes reprogram the cervical cancer microenvironment independently of and synergistically with estrogen. Proc. Natl. Acad. Sci. 114(43), E9076–E9085 (2017)

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  76. NIH: Biological pathways fact sheet (2015). https://www.genome.gov/about-genomics/fact-sheets/Biological-Pathways-Fact-Sheet

  77. Kanehisa, M., Goto, S.: Kegg: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30 (2000)

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  78. Moon, J.H., Lim, S., Jo, K., Lee, S., Seo, S., Kim, S.: Pintnet: construction of condition-specific pathway interaction network by computing shortest paths on weighted ppi. BMC Syst. Biol. 11(2), 15 (2017)

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  79. Lee, S., Lim, S., Lee, T., Sung, I., Kim, S.: Cancer subtype classification and modeling by pathway attention and propagation. Bioinformatics 36(12), 3818–3824 (2020)

    CAS  PubMed  CrossRef  Google Scholar 

  80. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018)

    PubMed  CrossRef  Google Scholar 

  81. Fisher, B., Costantino, J., Redmond, C., Poisson, R., Bowman, D., Couture, J., Dimitrov, N.V., Wolmark, N., Wickerham, D.L., Fisher, E.R., et al.: A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor–positive tumors. New Engl. J. Med. 320(8), 479–484 (1989)

    CAS  PubMed  CrossRef  Google Scholar 

  82. Cho, H.S., Mason, K., Ramyar, K.X., Stanley, A.M., Gabelli, S.B., Denney Jr, D.W., Leahy, D.J.: Structure of the extracellular region of her2 alone and in complex with the herceptin fab. Nature 421(6924), 756 (2003)

    CAS  PubMed  CrossRef  Google Scholar 

  83. Dai, X., Li, T., Bai, Z., Yang, Y., Liu, X., Zhan, J., Shi, B.: Breast cancer intrinsic subtype classification, clinical use and future trends. Am. J. Cancer Res. 5(10), 2929 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee, S., Park, Y., Kim, S.: Midas: Mining differentially activated subpaths of kegg pathways from multi-class rna-seq data. Methods 124, 13–24 (2017)

    CAS  PubMed  CrossRef  Google Scholar 

  85. Huang, M.W., Chen, C.W., Lin, W.C., Ke, S.W., Tsai, C.F.: Svm and svm ensembles in breast cancer prediction. PLoS ONE 12(1), e0161,501 (2017)

    CrossRef  CAS  Google Scholar 

  86. Rhee, S., Seo, S., Kim, S.: Hybrid approach of relation network and localized graph convolutional filtering for breast cancer subtype classification. Preprint (2017). arXiv:1711.05859

    Google Scholar 

  87. Burt, J.R., Torosdagli, N., Khosravan, N., RaviPrakash, H., Mortazi, A., Tissavirasingham, F., Hussein, S., Bagci, U.: Deep learning beyond cats and dogs: recent advances in diagnosing breast cancer with deep neural networks. Br. J. Radiol. 91(1089), 20170,545 (2018)

    CrossRef  Google Scholar 

  88. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. Preprint (2013). arXiv:1312.6203

    Google Scholar 

  89. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)

    Google Scholar 

  90. Pyszniak, M., Tabarkiewicz, J., Łuszczki, J.J.: Endocannabinoid system as a regulator of tumor cell malignancy–biological pathways and clinical significance. Onco Targets Ther. 9, 4323 (2016)

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  91. Jo, K., Jung, I., Moon, J.H., Kim, S.: Influence maximization in time bounded network identifies transcription factors regulating perturbed pathways. Bioinformatics 32(12), i128–i136 (2016)

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  92. Mazza, A., Klockmeier, K., Wanker, E., Sharan, R.: An integer programming framework for inferring disease complexes from network data. Bioinformatics 32(12), i271–i277 (2016)

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Pak, M. et al. (2021). Network Propagation for the Analysis of Multi-omics Data. In: Yoon, BJ., Qian, X. (eds) Recent Advances in Biological Network Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-57173-3_9

Download citation