Skip to main content

Global Alignment of PPI Networks

  • Chapter
  • First Online:
Recent Advances in Biological Network Analysis

Abstract

Given multiple PPI networks from different species, the global PPI network alignment problem is that of providing a global mapping between the nodes of the networks or subnetworks within them. Functional orthology detection, protein function prediction or verification, detection of common orthologous pathways, and reconstruction of the evolutionary dynamics of various species are some of the notable application areas of the global PPI network alignment problem. We focus on describing the basics of the problem, providing various formal definitions in the form of combinatorial optimization functions together with their computational complexities, and the algorithmic pillars of the suggested approaches. We also describe the common metrics employed in evaluating and comparing different global PPI network alignment outputs. Finally, we provide a discussion of relatively less studied aspects of the problem that may suggest potential open problems in need of further research on the topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abaka, G., Biyikoglu, T., Erten, C.: Campways: constrained alignment framework for the comparative analysis of a pair of metabolic pathways. Bioinformatics 29(13), i145–i153 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aebersold, R., Mann, M.: Mass spectrometry-based proteomics. Nature 422(6928), 198–207 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. Aladağ, A.E., Erten, C.: Spinal: Scalable protein interaction network alignment. Bioinformatics 29(7), 917–924 (2013)

    Article  PubMed  CAS  Google Scholar 

  4. Alkan, F., Bíyíkoglu, T., Demange, M., Erten, C.: Structure of conflict graphs in constraint alignment problems and algorithms. Discrete Math. Theore. Comput. Sci. 21(4), (2019). http://dmtcs.episciences.org/5755

  5. Alkan, F., Erten, C.: Beams: backbone extraction and merge strategy for the global many-to-many alignment of multiple ppi networks. Bioinformatics 30(4), 531–539 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. Alkan, F., Erten, C.: Sipan: Simultaneous prediction and alignment of protein-protein interaction networks. Bioinformatics (Oxford, England) 31, 2356–2363 (2015)

    Google Scholar 

  7. Ashburner, M., Ball, C.A., Blake, J.A., et al.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ay, F., Kellis, M., Kahveci, T.: Submap: aligning metabolic pathways with subnetwork mappings. J. Comput. Biol. 18(13), 219–235 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bader, G.D., Hogue, C.W.V.: Analyzing yeast protein-protein interaction data obtained from different sources. Nat. Biotechnol. 20(10), 991–997 (2002)

    Article  CAS  PubMed  Google Scholar 

  10. Bandyopadhyay, S., Sharan, R., Ideker, T.: Systematic identification of functional orthologs based on protein network comparison. Genome Research 16(3), 428–35 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bayati, M., Borgs, C., Chayes, J.T., Zecchina, R.: Belief propagation for weighted b-matchings on arbitrary graphs and its relation to linear programs with integer solutions. SIAM J. Discrete Math. 25(2), 989–1011 (2011)

    Article  Google Scholar 

  12. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard, J.J.: Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. Trans. Rob. 32(6), 1309–1332 (2016). https://doi.org/10.1109/TRO.2016.2624754

    Article  Google Scholar 

  13. Chindelevitch, L., Liao, C.S., Berger, B.: Local optimization for global alignment of protein interaction networks. In: Pacific Symposium on Biocomputing, pp. 123–132 (2010)

    Google Scholar 

  14. Chindelevitch, L., Ma, C.Y., Liao, C.S., Berger, B.: Optimizing a global alignment of protein interaction networks. Bioinformatics 29(21), 2765–2773 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clark, C., Kalita, J.: A comparison of algorithms for the pairwise alignment of biological networks. Bioinformatics (Oxford, England) 30, 2351–2359 (2014)

    Google Scholar 

  16. Clark, C., Kalita, J.: A multiobjective memetic algorithm for PPI network alignment. Bioinformatics 31(12), 1988–1998 (2015)

    Article  CAS  PubMed  Google Scholar 

  17. Dohrmann, J., Puchin, J., Singh, R.: Global multiple protein-protein interaction network alignment by combining pairwise network alignments. BMC Bioinformatics 16(13), S11 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dutkowski, J., Tiuryn, J.: Identification of functional modules from conserved ancestral protein–protein interactions. Bioinformatics 23(13), i149–i158 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. Edmonds, J.: Maximum matching and a polyhedron with 0, 1-vertices. J. Res. Natl. Bur. Stand. B 69, 125–130 (1965)

    Article  Google Scholar 

  20. El-Kebir, M., Heringa, J., Klau, G.W.: Lagrangian relaxation applied to sparse global network alignment. In: Loog, M., Wessels, L., Reinders, M.J.T., de Ridder, D. (eds.) Pattern Recognition in Bioinformatics. pp. 225–236. Springer, Berlin, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Elmsallati, A., Clark, C., Kalita, J.: Global alignment of protein-protein interaction networks: A survey. IEEE/ACM Trans. Comput. Biol. Bioinform. 13(4), 689–705 (2016). https://doi.org/10.1109/TCBB.2015.2474391

    Article  CAS  PubMed  Google Scholar 

  22. Fertin, G., Rizzi, R., Vialette, S.: Finding occurrences of protein complexes in protein–protein interaction graphs. J. Discrete Algorithms 7(1), 90–101 (2009)

    Article  Google Scholar 

  23. Finley, R.L., Brent, R.: Interaction mating reveals binary and ternary connections between drosophila cell cycle regulators. Proc. Natl. Acad. Sci. USA 91(26), 12980–12984 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fionda, V.: Protein-protein interaction network alignment: Algorithms and tools. In: Pan, Y., Wang, J., Li, M. (eds.) Algorithmic and Artificial Intelligence Methods for Protein Bioinformatics, chap. 22, pp. 431–448. Wiley, Hoboken, NJ (2013)

    Chapter  Google Scholar 

  25. Flannick, J., Novak, A., Srinivasan, B.S., McAdams, H.H., Batzoglou, S.: Graemlin: general and robust alignment of multiple large interaction networks. Genome Research 16(9), 1169–1181 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gabow, H.N.: Scaling algorithms for network problems. In: Proceedings of the 24th Annual Symposium on Foundations of Computer Science. pp. 248–258. SFCS ’83, IEEE Computer Society, Washington, DC, USA (1983). https://doi.org/10.1109/SFCS.1983.68

  27. Gao, J., Song, B., Ke, W., Hu, X.: Balanceali: Multiple PPI network alignment with balanced high coverage and consistency. IEEE Trans. NanoBiosci. 16(5), 333–340 (2017). https://doi.org/10.1109/TNB.2017.2705521

    Article  Google Scholar 

  28. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)

    Google Scholar 

  29. Gligorijević, V., Malod-Dognin, N., Pržulj, N.: Fuse: multiple network alignment via data fusion. Bioinformatics 32(8), 1195–1203 (2015)

    Article  PubMed  CAS  Google Scholar 

  30. Goh, C.S., Cohen, F.E.: Co-evolutionary analysis reveals insights into protein-protein interactions. J. Mol. Biol. 324(1), 177–192 (2002)

    Article  CAS  PubMed  Google Scholar 

  31. Golub, G.H., Van Loan, C.F.: Matrix Computations (3rd edn.). Johns Hopkins University Press, Baltimore, MD, USA (1996)

    Google Scholar 

  32. Guzzi, P., Milenković, T.: Survey of local and global biological network alignment: The need to reconcile the two sides of the same coin. Brief. Bioinform. 19 (01 2017)

    Google Scholar 

  33. Han, J.D.J., Bertin, N., Hao, T., Goldberg, D.S., Berriz, G.F., Zhang, L.V., Dupuy, D., Walhout, A.J., Cusick, M.E., Roth, F.P., Vidal, M.: Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430(6995), 88–93 (2004)

    Article  CAS  PubMed  Google Scholar 

  34. Hashemifar, S., Ma, J., Naveed, H., Canzar, S., Xu, J.: ModuleAlign: module-based global alignment of protein–protein interaction networks. Bioinformatics 32(17), i658–i664 (08 2016)

    Google Scholar 

  35. Hashemifar, S., Xu, J.: Hubalign: An accurate and efficient method for global alignment of protein-protein interaction networks. Bioinformatics (Oxford, England) 30, i438–i444 (2014). https://doi.org/10.1093/bioinformatics/btu450

  36. Hunter, H.B., Aaron, A.E., Lars, L.M., Curt, C., Marcus, M.W.: Evolutionary rate in the protein interaction network. Science 296(5568), 750–752 (2002)

    Article  Google Scholar 

  37. Kazemi, E., Hassani, H., Grossglauser, M., Pezeshgi Modarres, H.: Proper: global protein interaction network alignment through percolation matching. BMC Bioinformatics 17(1), 527 (Dec 2016)

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R., Ideker, T.: Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc. Natl. Acad. Sci. 100(20), 11394–11399 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kelley, B.P., Yuan, B., Lewitter, F., Sharan, R., Stockwell, B.R., Ideker, T.: Pathblast: a tool for alignment of protein interaction networks. Nucleic Acids Res. 32(Web-Server-Issue), 83–88 (2004)

    Google Scholar 

  40. Koyutürk, M., Kim, Y., Topkara, U., Subramaniam, S., Szpankowski, W., Grama, A.: Pairwise alignment of protein interaction networks. J. Comput. Biol. 13(2), 182–199 (2006)

    Article  PubMed  Google Scholar 

  41. Kuchaiev, O., Milenković, T., Memišević, V., Hayes, W., Pržulj, N.: Topological network alignment uncovers biological function and phylogeny. J. R. Soc. Interface 7(50), 1341–1354 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kuchaiev, O., Pržulj, N.: Integrative network alignment reveals large regions of global network similarity in yeast and human. Bioinformatics 27(10), 1390–1396 (2011)

    Article  CAS  PubMed  Google Scholar 

  43. Liao, C.S., Lu, K., Baym, M., Singh, R., Berger, B.: Isorankn: spectral methods for global alignment of multiple protein networks. Bioinformatics 25(12), i253–i258 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Malod-Dognin, N., Pržulj, N.: L-GRAAL: Lagrangian graphlet-based network aligner. Bioinformatics 31(13), 2182–2189 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Milenković, T., Leong Ng, W., Hayes, W., Pržulj, N.: Optimal network alignment with graphlet degree vectors. Cancer Inform. 9, 121–137 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mohammadi, S., Grama, A.: Biological network alignment. In: Koyutürk, M., Subramaniam, S., Grama, A. (eds.) Functional Coherence of Molecular Networks in Bioinformatics, chap. 5, pp. 97–136. Springer (2011)

    Google Scholar 

  47. Narayanan, M., Karp, R.M.: Comparing protein interaction networks via a graph match-and-split algorithm. J. Comput. Biol. 14(7), 892–907 (2007)

    Article  CAS  PubMed  Google Scholar 

  48. Neyshabur, B., Khadem, A., Hashemifar, S., Arab, S.S.: NETAL: a new graph-based method for global alignment of protein–protein interaction networks. Bioinformatics 29(13), 1654–1662 (2013)

    Article  CAS  PubMed  Google Scholar 

  49. Patro, R., Kingsford, C.: Global network alignment using multiscale spectral signatures. Bioinformatics 28(23), 3105–3114 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Phan, H.T.T., Sternberg, M.J.E.: PINALOG: a novel approach to align protein interaction networks–implications for complex detection and function prediction. Bioinformatics 28(9), 1239–1245 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms for the matching of chemical structures. J. Comput. Aided Mol. Des. 16(7), 521–533 (2002)

    Article  CAS  PubMed  Google Scholar 

  52. Remm, M., Storm, C.E., Sonnhammer, E.L.: Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J. Mol. Biol. 314(5), 1041–1052 (2001)

    Article  CAS  PubMed  Google Scholar 

  53. Remm, M., Storm, C., Sonnhammer, E.: Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J. Mol. Biol. 314, 1041–52 (2002). https://doi.org/10.1006/jmbi.2000.5197

    Article  CAS  Google Scholar 

  54. Sahraeian, S., Yoon, B.J.: A network synthesis model for generating protein interaction network families. PLoS ONE 7, e41474 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sahraeian, S., Yoon, B.J.: Resque: Network reduction using semi-Markov random walk scores for efficient querying of biological networks. Bioinformatics (Oxford, England) 28, 2129–2136 (2012)

    Google Scholar 

  56. Sahraeian, S.M.E., Yoon, B.J.: Smetana: Accurate and scalable algorithm for probabilistic alignment of large-scale biological networks. PLoS ONE 8(7), e67995 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Sakai, S., Togasaki, M., Yamazaki, K.: A note on greedy algorithms for the maximum weighted independent set problem. Discrete Appl. Math. 126(2-3), 313–322 (2003). https://doi.org/10.1016/S0166-218X(02)00205-6

    Article  Google Scholar 

  58. Saraph, V., Milenković, T.: MAGNA: Maximizing accuracy in global network alignment. Bioinformatics 30(20), 2931–2940 (07 2014)

    Google Scholar 

  59. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison. Nature Biotechnology 24(4), 427–433 (2006)

    Article  CAS  PubMed  Google Scholar 

  60. Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T., Karp, R.M., Ideker, T.: Conserved patterns of protein interaction in multiple species. Proc. Natl. Acad. Sci. USA 102(6), 1974–1979 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Singh, R., Xu, J., Berger, B.: Pairwise global alignment of protein interaction networks by matching neighborhood topology. In: Speed, T., Huang, H. (eds.) Research in Computational Molecular Biology. pp. 16–31. Springer, Berlin, Heidelberg (2007)

    Chapter  Google Scholar 

  62. Singh, R., Xu, J., Berger, B.: Global alignment of multiple protein interaction networks. In: Pacific Symposium on Biocomputing, pp. 303–314 (2008)

    Google Scholar 

  63. Singh, R., Xu, J., Berger, B.: Global alignment of multiple protein interaction networks with application to functional orthology detection. Proc. Natl. Acad. Sci. 105(35), 12763–12768 (2008). https://doi.org/10.1073/pnas.0806627105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tian, W., Samatova, N.: Pairwise alignment of interaction networks by fast identification of maximal conserved patterns. Pac. Symp. Biocomput. 14, 99–110 (2009)

    Google Scholar 

  65. Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theor. 13(2), 260–269 (2006). https://doi.org/10.1109/TIT.1967.1054010

    Article  Google Scholar 

  66. Zaslavskiy, M., Bach, F.R., Vert, J.P.: Global alignment of protein-protein interaction networks by graph matching methods. Bioinformatics 25(12), 259–267 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesim Erten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erten, C. (2021). Global Alignment of PPI Networks. In: Yoon, BJ., Qian, X. (eds) Recent Advances in Biological Network Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-57173-3_1

Download citation

Publish with us

Policies and ethics