Skip to main content

A Framework for Performing Data-Driven Modeling of Tumor Growth with Radiotherapy Treatment

  • Chapter
  • First Online:
Using Mathematics to Understand Biological Complexity

Abstract

Recent technological advances make it possible to collect detailed information about tumors, and yet clinical assessments about treatment responses are typically based on sparse datasets. In this work, we propose a workflow for choosing an appropriate model, verifying parameter identifiability, and assessing the amount of data necessary to accurately calibrate model parameters. As a proof-of-concept, we compare tumor growth models of varying complexity in an effort to determine the level of model complexity needed to accurately predict tumor growth dynamics and response to radiotherapy. We consider a simple, one-compartment ordinary differential equation model which tracks tumor volume and a two-compartment model that accounts for tumor volume and the fraction of necrotic cells contained within the tumor. We investigate the structural and practical identifiability of these models, and the impact of noise on identifiability. We also generate synthetic data from a more complex, spatially-resolved, cellular automaton model (CA) that simulates tumor growth and response to radiotherapy. We investigate the fit of the ODE models to tumor volume data generated by the CA in various parameter regimes, and we use sequential model calibration to determine how many data points are required to accurately infer model parameters. Our results suggest that if data on tumor volumes alone is provided, then a tumor with a large necrotic volume is the most challenging case to fit. However, supplementing data on total tumor volume with additional information on the necrotic volume enables the two compartment ODE model to perform significantly better than the one compartment model in terms of parameter convergence and predictive power.

Authors Heyrim Cho, Allison L. Lewis, and Kathleen M. Storey have equally contributed to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Balsa-Canto, A. A. Alonso, J. R. Banga. An iterative identification procedure for dynamic modeling of biochemical networks. BMS Systems Biology. 4(11), (2010). https://doi.org/10.1186/1752-0509-4-11.

  2. R. Bellman, K. J. Astrom. On structural Identifiability. Mathematical Biosciences, 7, 329–339 (1970).

    Article  Google Scholar 

  3. M.A. Boemo, H.M. Byrne. Mathematical modelling of a hypoxia-regulated oncolytic virus delivered by tumour-associated macrophages. J Theor Biol 461, 102–116 (2019).

    Article  Google Scholar 

  4. H. Byrne, L. Preziosi (2003). Modelling solid tumour growth using the theory of mixtures, Math Med Biol 20, 341–366.

    Article  Google Scholar 

  5. M. J. Chappell, K. R. Godfrey, S. Vajda. Global identifiability of the parameters of nonlinear systems with specified inputs: a comparison of methods. Mathematical Biosciences, 102, 41–73 (1990).

    Article  Google Scholar 

  6. O.T. Chis, J.R. Banga, E. Balsa-Canto. Structural identifiability of systems biology models: a critical comparison of methods. PLOS One. 6(11), 1–16 (2011). https://doi.org/10.1371/journal.pone.0027755.

    Article  Google Scholar 

  7. O.T. Chis, J.R. Banga, E. Balsa-Canto. GenSSI: a software toolbox for structural identifiability analysis of biological models. Bioinformatics. 27(18), 2610–2611 (2011). https://doi.org/10.1093/bioinformatics/btr431.

    Google Scholar 

  8. J. Collis, A.J. Connor, M. Paczkowski, P. Kannan, J. Pitt-Francis, H.M. Byrne, M.E. Hubbard. Bayesian calibration, validation and uncertainty quantification for predictive modeling of tumor growth: a tutorial. Bull. Math. Biol. 79(4), 939–974. (2017).

    Article  MathSciNet  Google Scholar 

  9. J.M.J. da Costa, H.R.B. Orlande, W.B. da Silaa. Model selection and parameter estimation in tumor growth models using approximate Bayesian computation – ABC. Comp. Appl. Math. 37(3), 2795–2815. (2018).

    Article  MathSciNet  Google Scholar 

  10. H. Enderling, M.A.J. Chaplain, P. Hahnfeldt. Quantitative modeling of tumor dynamics and radiotherapy. Acta Biotheoretica. 58(4), 341–353. (2010).

    Article  Google Scholar 

  11. H. Haario, M. Laine, A. Mira, et al.: Efficient adaptive MCMC. Stat. Comput. 26, 339–354 (2006).

    Article  MathSciNet  Google Scholar 

  12. E.J. Hall. Radiobiology for the radiologist. J.B. Lippincott, Philadelphia, 478–480 (1994).

    Google Scholar 

  13. N. Harald. Random number generation and quasi-Monte Carlo method. SIAM (1992).

    Google Scholar 

  14. P. Kannan, M. Paczkowski, A. Miar, et al.: Radiation resistant cancer cells enhance the survival and resistance of sensitive cells in prostate spheroids. bioRxiv (2019). https://doi.org/10.1101/564724.

  15. J. Kursawe, R.E. Baker, A.G. Fletcher. Approximate Bayesian computation reveals the importance of repeated measurements for parameterising cell-based models of growing tissues. J. Theor. Biol. 443, 66–81. (2018)

    Article  MathSciNet  Google Scholar 

  16. B. Lambert, A.L. MacLean, A.G. Fletcher, A.N. Combes, M.H. Little, H.M. Byrne. Bayesian inference of agent-based models: a tool for studying kidney branching morphogenesis. J. Math. Biol. 76(7), 1673–1697. (2018).

    Article  MathSciNet  Google Scholar 

  17. D.E. Lea, D.G. Catcheside. The mechanism of the induction by radiation of chromosome aberrations in tradescantia. Journal of Genetics. 44, 216–245 (1942).

    Article  Google Scholar 

  18. T.D. Lewin. Modelling the impact of heterogeneity in tumor composition on the response to fractionated radiotherapy. D. Phil. Thesis, University of Oxford, 2018.

    Google Scholar 

  19. T.D. Lewin, H.M. Byrne, P.K. Maini, J.J. Caudell, E.G. Moros, H. Enderling. The importance of dead material within a tumour on the dynamics in response to radiotherapy. Physics in Medicine and Biology. https://doi.org/10.1088/1361-6560/ab4c27 (2019).

  20. T.D. Lewin, P.K. Maini, E.G. Moros, H. Enderling, H.M. Byrne. A three-phase model to investigate the effects of dead material on the growth of avascular tumours. Mathematical Modelling of Natural Phenomena (in press) (2019).

    Google Scholar 

  21. E. Lima, J.T. Oden, D.A. Hormuth 2nd, T.E. Yankeelov, R.C. Almeida. Selection, calibration, and validation of models of tumor growth. Mathematical Models and Methods in Applied Sciences 26(12), 2341–2368. (2016).

    Article  MathSciNet  Google Scholar 

  22. J.T. Oden, A. Hawkins, S. Prudhomme. General diffuse-interface theories and an approach to predictive tumour growth modelling. Math. Models Meth. Appl. Sci. 20 (3), 477–517 (2010).

    Article  Google Scholar 

  23. H. Pohjanpalo. System identifiability based on the power series expansion of the solution. Mathematical Biosciences. 41, 21–33 (1978).

    Article  MathSciNet  Google Scholar 

  24. B. Ribba, N.H. Holford, P. Magni, I Troconiz, I Gueorguieva, P. Girard, C. Sarr, M. Elishmereni, C. Kloft, L.E. Friberg. A review of mixed-effects models of tumor growth and effects of anti-cancer treatment used in population analysis. CPT Pharmacometrics Syst. Pharmacol. 3, e113. (2014).

    Google Scholar 

  25. R.C. Smith. Uncertainty Quantification: Theory, Implementation, and Applications. SIAM Computational Science and Engineering Series (CS12). (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela M. Reynolds .

Editor information

Editors and Affiliations

Appendix: Structural Identifiability for the Two-Compartment Model

Appendix: Structural Identifiability for the Two-Compartment Model

Below, we investigate the structural identifiability of the two-compartment model with radiotherapy, given in Equations (19) and (20), using the same techniques as presented in Sect. 3.1.

1.1 Case 1: No Radiation

In this case the model reads

$$\displaystyle \begin{aligned} \frac{dY}{dt}&=\lambda(1-\varPhi)Y(1-(1-\varPhi)\frac{Y}{K})-\xi\varPhi Y\\ \frac{d\varPhi}{dt}&=(1-\varPhi)\left[ \eta-\lambda\varPhi(1-(1-\varPhi)\frac{Y}{K}-\xi\varPhi) \right] \end{aligned} $$

with unknown parameters p = {λ, K, ξ, η}, observable quantities y(p;t) = {Y, Φ}, and known initial conditions. We repeat the analysis as before, using the Taylor coefficients. We define the following known quantities:

$$\displaystyle \begin{aligned} a_{0}{\kern-1pt}={\kern-1pt}Y(0^{+}) \enspace b_0{\kern-1pt}={\kern-1pt}\phi(0^{+}) \enspace a_1{\kern-1pt}={\kern-1pt}Y'(0^{+}) \enspace b_1{\kern-1pt}={\kern-1pt}\phi'(0^{+})\quad a_2{\kern-1pt}={\kern-1pt}Y''(0^{+}) \enspace b_2=\phi''(0^{+}). \end{aligned}$$

We substitute these quantities into the model system to obtain:

$$\displaystyle \begin{aligned} a_1&=\lambda(1-b_0)a_0[1-(1-b_0)\frac{a_0}{K}]-\xi b_0a_0\\ &=[-(1 - b_0)^{2}a_{0}^2]\frac{\lambda}{K} + [(1 - b_0)a_0]\lambda - [b_0a_0]\xi \\ b_1&=(1-b_0)\left[ \eta-\lambda b_0(1-(1-b_0)\frac{a_0}{K}-\xi b_0) \right]\\ &+[-(1 - b_0)b_0]\lambda + [(1 - b_0)^2b_0a_0]\frac{\lambda}{K} - [(1 - b_0)b_0]\xi + [(1-b_0)]\eta. \end{aligned} $$

We differentiate the model equations once more to obtain:

$$\displaystyle \begin{aligned} a_2&=\frac{(-2\lambda(-1 + b_0)^2a_0 - ((\xi + \lambda)b_0 - \lambda)K)a_1 - a_0b_1(2(-1 + b_0)\lambda a_0 + (\xi + \lambda)K)}{K}\\ b_2&=\frac{(3a_0b_0^{2}\lambda + (-4\lambda a_0 + 2(\xi + \lambda)K)b_0 + \lambda a_0 - K(\xi + \eta + \lambda))b_1 + b_0a_1\lambda(-1 + b0)^2)}{K}. \end{aligned} $$

The above four equations can now be used to solve for each parameter as follows:

$$\displaystyle \begin{aligned} K&=\frac{1}{[((b_0-1)b_2 - b_{1}^2 )a_0^2 + a_2(b_0-1)^2a_0 - a_1^2(b_0-1)^2]b_1} \\ &\quad \times [(b_1(b_0 {\kern-1pt}+{\kern-1pt} 1)(b_0b_2 {\kern-1pt}-{\kern-1pt} b_1^2 {\kern-1pt}-{\kern-1pt} b_2)a_0^3 {\kern-1pt}+{\kern-1pt} ((a_1b_2 {\kern-1pt}+{\kern-1pt} a_2b_1)b_0^2 {\kern-1pt}+{\kern-1pt} ((-b_1^2 {\kern-1pt}-{\kern-1pt} b_2)a_1 {\kern-1pt}+{\kern-1pt} a_2b_1)b_0 \\ \\ &- a_1b_1^2 - a_2b_1)(-1 + b0)a_0^2- (-a_2b_0^3 + (a_1b_1 + a_2)b_0^2 + 2a_1b_1b_0 - 2a_1b_1) \\ &\quad \times a_1(-1 + b_0)a_0 - a_1^3b_0^2(-1 + b_0)^2)(-1 + b_0)],\\ \lambda&=\frac{-1}{(a_0b_0b_1 + a_1b_0^2 - a_0b_1 - 2a_1b_0 + a_1)a_0^2b_1}\\ &\quad \times [a_0^3b_0^2b_1b_2 - a_0^3b_0b_1^3 + a_0^2a_1b_0^3b_2 - a_0^2a_1b_0^2b_1^2 \\ &\quad + a_0^2a_2b_0^3b_1 - a_0a_1^2b_0^3b_1 + a_0a_1a_2b_0^4 - a_1^3b_0^4 - a_0^3b_1^3\\ &\quad - 2a_0^2a_1b_0^2b_2 - a_0a_1^2b_0^2b_1 - 2a_0a_1a_2b_0^3\\ &\quad + 2a_1^3b_0^3 - a_0^3b_1b_2 + a_0^2a_1b_0b_2 + a_0^2a_1b_1^2 - 2a_0^2a_2b_0b_1 + 4a_0a_1^2b_0b_1 \\ &\quad + a_0a_1a_2b_0^2- a_1^3b_0^2+ a_0^2a_2b_1 - 2a_0a_1^2b_1]\\ \eta&=-\frac{a_0^2b_0b_2 - a_0^2b_1^2 + a_0a_2b_0^2 - a_1^2b_0^2}{b_1a_0^2}\\ \xi &=\frac{a_0^2b_0b_2 - a_0^2b_1^2 + a_0a_2b_0^2 - a_1^2b_0^2 - a_0^2b_2 - a_0a_1b_1 - a_0a_2b_0 + a_1^2b_0}{b_1a_0^2} \end{aligned} $$

Since we are able to obtain unique solutions for each of the four parameters, we declare them to be structurally identifiable. For GenSSI, only two Lie derivatives are needed which yield rank 4, and thus results show all four parameters are structurally identifiable, in agreement with our calculations above.

In addition to the above analysis, we also repeated the analysis in the case in which only the tumor volume could be observed, (i.e., y(t;p) = Y (t)), but with known initial conditions in tumor volume and necrotic fraction. In this case, we took higher order Taylor series coefficients (up to order 4) and obtained that p = {λ, K, ξ, η} were structurally identifiable. Similarly, GenSSI took Lie derivatives up to order 4 and confirmed that all parameters were structurally identifiable.

1.2 Case 2: With Radiation Treatment

Similar to the single compartment model, here we examine the effect of a point treatment. The model equations read:

$$\displaystyle \begin{aligned} \frac{dY}{dt}&=\lambda(1-\varPhi)Y(1-(1-\varPhi)\frac{Y}{K})-\xi\varPhi Y\\ \frac{d\varPhi}{dt}&=(1-\varPhi)\left[ \eta-\lambda\varPhi(1-(1-\varPhi)\frac{Y}{K})-\xi\varPhi\right],\quad \mbox{for} \quad \; t_i^+ < t < t_{i+1}^-\\ \varPhi(t_{i}^{+})&=\varPhi(t_{i}^{-})+(1-\varPhi(t_{i}^{-}))(1-\varGamma), \end{aligned} $$

where \(\varGamma =\exp (-\alpha d-\beta d^2)\). Since the other parameters are known and measured prior to treatment, as in the previous section, we want to solve for p = {α, β} assuming y(p;t) = {Y, Φ} as observable quantities. We let

$$\displaystyle \begin{aligned} A_0=Y(t_{i}^{+}) \quad B_0=\varPhi(t_{i}^{-}) \quad A_1=Y'(t_{i}^{+}) \quad B_1=\varPhi'(t_{i}^{+}), \end{aligned} $$

and substitute these quantities into the model equations:

$$\displaystyle \begin{aligned} A_1&=\frac{-A_0^2\lambda(B_0 - 1)^2}{K}\varGamma^2 - A_0(\xi + \lambda)(B_0 - 1)\varGamma - A_0\xi\\ B_1&=\frac{[A_0\lambda(B_0 {\kern-1pt}-{\kern-1pt} 1)^2\varGamma^2 {\kern-1pt}+{\kern-1pt} (B_0 {\kern-1pt}-{\kern-1pt} 1)((K {\kern-1pt}+{\kern-1pt} A_0)\lambda {\kern-1pt}+{\kern-1pt} \xi K)\varGamma {\kern-1pt}+{\kern-1pt} K(\xi {\kern-1pt}-{\kern-1pt} \eta + \lambda)]\varGamma(B_0 - 1)}{K} \end{aligned} $$

As with the one-compartment model, we find that the equations are not informative for α and β simultaneously, thus, we again declare the pair (α, β) to be non-identifiable in this setting. As before, we choose to fix α for all subsequent model calibrations and measure the ratio α∕β to use as a measure of radiosensitivity.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Association for Women in Mathematics and the Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cho, H. et al. (2021). A Framework for Performing Data-Driven Modeling of Tumor Growth with Radiotherapy Treatment. In: Segal, R., Shtylla, B., Sindi, S. (eds) Using Mathematics to Understand Biological Complexity. Association for Women in Mathematics Series, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-57129-0_8

Download citation

Publish with us

Policies and ethics