Skip to main content

Target Tracking Based on DDPG in Wireless Sensor Network

  • Conference paper
  • First Online:
Bio-inspired Information and Communication Technologies (BICT 2020)

Abstract

For target tracking in mission critical sensors and sensor networks (MC-SSN), the contribution of the measured value of each sensor node to the data fusion center is different, so better weighted node fusion and scheduling node participation in tracking can obtain better tracking performance. In this paper, to address this problem and fully utilize the network transmission capability, we proposed a collaborative perception and intelligent scheduling to jointly optimize system responding latency and tracking accuracy while guaranteeing low energy consumption. Based on the unreliable historical tracking data, we formulate the joint optimization problem as the infinite horizon Markov Decision Process (MDP), we propose an intelligent collaboration scheme based on the deep deterministic policy gradient (DDPG) approach to perform the optimal tracking with low energy consumption and high tracking accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suriyachai, P., Roedig, U., Scott, A.: A survey of mac protocols for mission-critical applications in wireless sensor networks. IEEE Commun. Surv. Tutor. 14(99), 1–25 (2012)

    Google Scholar 

  2. Liang, J., Hu, Y., Liu, H., Mao, C.: Fuzzy clustering in radar sensor networks for target detection. Ad Hoc Netw. 58, 150–159 (2016)

    Article  Google Scholar 

  3. Qiao, G., Leng, S., Zhang, K., He, Y.: Collaborative task offloading in vehicular edge multi-access networks. IEEE Commun. Mag. 56(8), 48–54 (2018)

    Article  Google Scholar 

  4. Bhatti, S., Xu, J.: Survey of target tracking protocols using wireless sensor network. In: 2009 Fifth International Conference on Wireless and Mobile Communications, pp. 110–115. IEEE (2009)

    Google Scholar 

  5. Lin, C.Y., Peng, W.C., Tseng, Y.C.: Efficient in-network moving object tracking in wireless sensor networks. IEEE Trans. Mob. Comput. 5(8), 1044–1056 (2006)

    Article  Google Scholar 

  6. Wälchli, M., Skoczylas, P., Meer, M., Braun, T.: Distributed event localization and tracking with wireless sensors. In: Boavida, F., Monteiro, E., Mascolo, S., Koucheryavy, Y. (eds.) WWIC 2007. LNCS, vol. 4517, pp. 247–258. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72697-5_21

    Chapter  Google Scholar 

  7. Xu, Y., Lee, W.C.: On localized prediction for power efficient object tracking in sensor networks. In: 23rd International Conference on Distributed Computing Systems Workshops, Proceedings, pp. 434–439. IEEE (2003)

    Google Scholar 

  8. Chen, Y.S., Ann, S.Y., Lin, Y.W.: VE-mobicast: a variant-egg-based mobicast routing protocol for sensornets. Wirel. Netw. 14(2), 199–218 (2008). https://doi.org/10.1007/s11276-006-9957-9

    Article  Google Scholar 

  9. Jin, G.Y., Lu, X.Y., Park, M.S.: Dynamic clustering for object tracking in wireless sensor networks. In: Youn, H.Y., Kim, M., Morikawa, H. (eds.) UCS 2006. LNCS, vol. 4239, pp. 200–209. Springer, Heidelberg (2006). https://doi.org/10.1007/11890348_16

    Chapter  Google Scholar 

  10. Luo, J., Zhang, Z., Liu, C., Luo, H.: Reliable and cooperative target tracking based on WSN and WiFi in indoor wireless networks. IEEE Access 6, 24846–24855 (2018)

    Article  Google Scholar 

  11. Bhuiyan, M.Z.A., Wang, G., Vasilakos, A.V.: Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Trans. Comput. 64(7), 1968–1982 (2014)

    Article  Google Scholar 

  12. Yang, X., Zhang, W.A., Yu, L., Xing, K.: Multi-rate distributed fusion estimation for sensor network-based target tracking. IEEE Sens. J. 16(5), 1233–1242 (2015)

    Article  Google Scholar 

  13. Mahboubi, H., Masoudimansour, W., Aghdam, A.G., Sayrafian-Pour, K.: An energy-efficient target-tracking strategy for mobile sensor networks. IEEE Trans. Cybern. 47(2), 1–13 (2016)

    Google Scholar 

  14. Lee, S.J., Park, S.S., Choi, H.L.: Potential game-based non-myopic sensor network planning for multi-target tracking. IEEE Access 6, 79245–79257 (2018)

    Article  Google Scholar 

  15. Vazquez-Olguin, M., Shmaliy, Y.S., Ibarra-Manzano, O.G.: Distributed unbiased FIR filtering with average consensus on measurements for WSNs. IEEE Trans. Ind. Inform. 13(3), 1440–1447 (2017)

    Article  Google Scholar 

  16. Fan, B., Leng, S., Yang, K.: A dynamic bandwidth allocation algorithm in mobile networks with big data of users and networks. IEEE Netw. 30(1), 6–10 (2016)

    Article  Google Scholar 

  17. Doya, K.: Reinforcement learning in continuous time and space. Neural Comput. 12(1), 219–245 (2000)

    Article  CAS  Google Scholar 

  18. Liang, J., Yu, X., Li, H.: Collaborative energy-efficient moving in internet of things: genetic fuzzy tree versus neural networks. IEEE Internet Things J. 6(4), 6070–6078 (2018)

    Article  Google Scholar 

  19. Liu, C., Lonsberry, A.G., Nandor, M.J., Audu, M.L., Lonsberry, A.J., Quinn, R.D.: Implementation of deep deterministic policy gradients for controlling dynamic bipedal walking. In: Conference on Biomimetic and Biohybrid Systems, vol. 4, no. 1, p. 28 (2018)

    Google Scholar 

  20. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Deterministic policy gradient algorithms. In: 31st International Conference on Machine Learning, ICML (2014)

    Google Scholar 

  21. Pillutla, L.S.: Network coding based distributed indoor target tracking using wireless sensor networks. Wirel. Pers. Commun. 96(3), 3673–3691 (2017). https://doi.org/10.1007/s11277-017-4069-7

    Article  Google Scholar 

  22. Huang, Y., Liang, W., Yu, H.B., Xiao, Y.: Target tracking based on a distributed particle filter in underwater sensor networks. Wirel. Commun. Mob. Comput. 8(8), 1023–1033 (2008)

    Article  Google Scholar 

  23. Sozer, E.M., Stojanovic, M., Proakis, J.G.: Underwater acoustic networks. IEEE J. Oceanic Eng. 25(1), 72–83 (2000)

    Article  Google Scholar 

  24. Rault, T., Bouabdallah, A., Challal, Y.: Energy efficiency in wireless sensor networks: a top-down survey. Comput. Netw. 67, 104–122 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China (Grants No. 61731006) and Zhongshan City Team Project (Grant No. 180809162197874).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinhua Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liao, Y., Liu, Q. (2020). Target Tracking Based on DDPG in Wireless Sensor Network. In: Chen, Y., Nakano, T., Lin, L., Mahfuz, M., Guo, W. (eds) Bio-inspired Information and Communication Technologies. BICT 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 329. Springer, Cham. https://doi.org/10.1007/978-3-030-57115-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57115-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57114-6

  • Online ISBN: 978-3-030-57115-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics