Skip to main content

Sound Source Localization Is a Multisystem Process

  • Chapter
  • First Online:
Binaural Hearing

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 73))

Abstract

The chapter briefly reviews the current information about the various auditory-spatial cues used for localizing sound sources in a three-dimensional space. Then the chapter reviews the possible head-position cues that might be used for sound source localization. Finally, an explanation of the integration of auditory-spatial and head-position cues is described and literature concerning the integration of the two sets of cues is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aaronson NL, Hartmann WM (2014) Testing, correcting, and extending the Woodworth model for interaural time difference. J Acoust Soc Am 135:817–823

    Article  PubMed  PubMed Central  Google Scholar 

  • Adrian L (1928) The basis of sensation: the action of the sense organs. Hafner, New York

    Google Scholar 

  • Alais D, Burr D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14:257–262

    Article  CAS  PubMed  Google Scholar 

  • Blauert J (1997) Spatial hearing. The MIT Press, Cambridge, MA

    Google Scholar 

  • Blauert J (ed) (2013) The technology of binaural listening. Springer-Verlag, Berlin

    Google Scholar 

  • Boring EG (1929) A history of experimental psychology. Appleton-Century-Crofts, New York. (Reprinted in 1950)

    Google Scholar 

  • Boring EG (1942) Sensation and perception in the history of experimental psychology. Appleton-Century-Crofts, New York

    Google Scholar 

  • Boring EG, Gardener L (eds) (1918) A history of psychology in autobiography. Appleton-Century-Crofts, New York

    Google Scholar 

  • Braasch J, Clapp S, Parks A, Pastore MT (2015) A binaural model that analyses aural spaces and stereophonic reproduction systems by utilizing head movements. In: Blauert J (ed) The technology of binaural listening. Springer-Verlag, Berlin-Heidelberg, pp 201–224

    Google Scholar 

  • Bridgeman B, Stark L (1991) Ocular proprioception and efference copy in registering visual direction. Vis Res 31:1903–1913

    Article  CAS  PubMed  Google Scholar 

  • Brimijoin WO, Akeroyd MA (2012) The role of head movements and signal spectrum in auditory front/back illusion. Iperception 3:179–181

    PubMed  PubMed Central  Google Scholar 

  • Brimijoin WO, Akeroyd MA (2014) The moving minimum audible angle is smaller during self-motion than during source motion. Front Neurosci 8:1–8

    Article  Google Scholar 

  • Brimijoin WO, Akeroyd MA (2016) The effects of hearing impairment, age, and hearing aids on the use of self motion for determining front/back location. J Am Acad Audiol 27:588–600

    Article  PubMed  Google Scholar 

  • Britton Z, Arshad Q (2019) Vestibular and mulitsensory influences upon self-motion perception and the consequences for human behavior. Front Neurosci 7:1–10

    Google Scholar 

  • Brown AD, Stecker GC, Tollin DJ (2014) The precedence effect in sound localization. J Assoc Res Otolaryngol 13:1–28

    Google Scholar 

  • Brungart DS, Durlach NI, Rabinowitz WM (1999) Auditory localization of nearby sources. II. Localization of a broadband source. J Acoust Soc Am 106:1956–1968

    Article  CAS  PubMed  Google Scholar 

  • Chandler DW, Grantham DW (1992) Minimum audible movement angle in the horizontal plane as a function of stimulus frequency, bandwidth, source azimuth, and velocity. J Acoust Soc Am 91:1624–1632

    Article  CAS  PubMed  Google Scholar 

  • Crane T, Patterson S (2002) History of the mind-body problem. Taylor & Francis, New York

    Google Scholar 

  • de Boer K, Van Urk AT (1941) Some particulars of directional hearing. Philips Tech Rev 6:359–364

    Google Scholar 

  • Ernst MO, Bülthoff HH (2004) Merging the senses into a robust percept. Trends Cogn Sci 8:162–169

    Article  PubMed  Google Scholar 

  • Fechner G (1860) Elements of psychophysics. Holt, Rinehart, and Winston Inc, New York. (Reprinted in 1942)

    Google Scholar 

  • Freeman TCA, Culling JF, Akeroyd MA, Brimijoin WO (2017) Auditory compensation for head rotation is incomplete. J Exp Psychol Hum Percept Perform 43:371–380

    Article  PubMed  Google Scholar 

  • Fukuda T (1959) The stepping test: two phases of the labyrinthine reflex. Acta Otolaryngol 50:95–108

    Article  CAS  PubMed  Google Scholar 

  • Genzel D, Firzla U, Wiegrebe L, MacNeilage PR (2016) Dependence of auditory spatial updating on vestibular, proprioceptive, and efference copy signals. J Neurophysiol 116:767–775

    Article  Google Scholar 

  • Genzel D, Schutte M, Brimijoin WO et al (2018) Psychophysical evidence for auditory motion parallax. Proc Natl Acad Sci 115:4264–4269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein B (2013) Sensation and perception, 9th edn. Wadsworth CENAGE Learning, Belmont

    Google Scholar 

  • Goupell MJ, Stakhovskaya OA (2018) Across-channel interaural-level-difference processing demonstrates frequency dependence. J Acoust Soc Am 143:645–658

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann WM, Rakerd B, Crawford ZD, Zhang PX (2016) Transaural experiments and a revised duplex theory for the localization of low-frequency tones. J Acoust Soc Am 139:968

    Article  PubMed  PubMed Central  Google Scholar 

  • Helmholtz H (1863) Die lehre von den tonempfindungen als physiologische grundlage fur de theorie der musik. Longmans, Green, and Co., London

    Google Scholar 

  • Hendrickx E, Stitt P, Messonnier JC et al (2017) Influence of head tracking on the externalization of speech stimuli for non-individualized binaural synthesis. J Acoust Soc Am 141:2011–2023

    Article  PubMed  Google Scholar 

  • Klemm O (1920) Über den Einfluss des binauralen zeitunterschiedes aud de localisation. Arch Ges Psychol 40:123–129

    Google Scholar 

  • Klier EM, Angelaki DE (2008) Spatial updating and the maintenance of visual constancy. Neuroscience 156:801–818

    Article  CAS  PubMed  Google Scholar 

  • Kohlraush A, Altosaar T (2011) Early research on spatial hearing by Alvar Wilska (1911-1987). Proceedings of forum acusticum, European acoustics association Alborg, Denmark: 1103–1108

    Google Scholar 

  • Kolarik AJ, Moore BCJ, Zahorik P, Cirstea S, Pardhan S (2016) Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss. Atten Percept Psychophys 78:373–395

    Article  PubMed  Google Scholar 

  • Kuhn GF (1987) Physical acoustics and measurements pertaining to directional hearing. In: Yost WA, Gourevitch G (eds) Directional hearing. Proceedings in life sciences. Springer, New York, pp 3–25

    Chapter  Google Scholar 

  • LaChance PA, Todd TA, Taube JS (2019) A sense of space in postrihnal cortex. Science 365:141

    Article  Google Scholar 

  • Lackner JR, DiZio P (2004) Vestibular, proprioceptive, and haptic contributions to spatial orientation. Annu Rev Psychol 56:115–147

    Article  Google Scholar 

  • Leutgeb S, Leutgeb JK, Moser MB, Moser EI (2005) Place cells, spatial maps and the population code for memory. Curr Opin Neurobiol 15:738–746

    Article  CAS  PubMed  Google Scholar 

  • Litovsky RY (2012) Spatial release from masking. Acoust Today 8(2):18–25

    Google Scholar 

  • Litovsky RY, Colburn HS, Yost WA, Guzman SJ (1999) The precedence effect. J Acoust Soc Am 106:1633–1654

    Article  CAS  PubMed  Google Scholar 

  • Macaulay EJ, Hartmann WM, Rakerd B (2010) The acoustical bright spot and mislocalization of tones by human listeners. J Acoust Soc Am 127:1440–1449

    Article  PubMed  PubMed Central  Google Scholar 

  • Macaulay EJ, Rakerd B, Andrews TJ, Hartmann WM (2017) On the localization of high-frequency, sinusoidally amplitude-modulated tones in free field. J Acoust Soc Am 141:847–863

    Article  PubMed  PubMed Central  Google Scholar 

  • Mack A, Herman E (1973) Position constancy during pursuit eye movement: an investigation for the Filehene illlusion. Quart J Exp Psych 25:71–84

    Article  CAS  Google Scholar 

  • MacPherson EA (2011) Head motion, spectral cues, and Wallach’s ‘principle of least displacement’ in sound localization. In: Suzuki Y, Brungart D, Kato H (eds) Principles and applications of spatial hearing. World Scientific, Singapore, pp 103–120

    Chapter  Google Scholar 

  • Majdak P, Goupell MJ, Laback B (2011) Two-dimensional localization of virtual sound sources in cochlear-implant listeners. Ear Hear 32(2):198–208

    Article  PubMed  PubMed Central  Google Scholar 

  • McAnally KI, Martin RL (2014) Sound localization with head movement: implications for 3-d audio displays. Front Neurosci 8:1–6

    Article  Google Scholar 

  • McCaslin DL, Dundas JA, Jacobson GP (2008) The bedside assessment of the vestibular system, 2nd edn. Plural Publishing, San Diego

    Google Scholar 

  • Medendorp WP (2011) Spatial constancy mechanisms in motor control. Philos Trans R Soc B Biol Sci 366:476–491

    Article  Google Scholar 

  • Middlebrooks JC (1992) Narrow-band sound localization related to external ear acoustics. J Acoust Soc Am 92:2607–2624

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks JC, Green DM (1991) Sound localization by human listeners. Annu Rev Psychol 42:135–159

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks JC, Simon JZ, Popper AN, Fay RR (eds) (2017) The auditory system at the cocktail party. ASA Press/Springer-Verlag, New York

    Google Scholar 

  • Mills AW (1972) Auditory localization. In: Tobias J (ed) Foundations of modern auditory theory (II). Academic Press, New York

    Google Scholar 

  • Montagne C, Zhou Y (2018) Audiovisual interactions in front and rear space. Front Psychol 9:1–15

    Article  Google Scholar 

  • Mustari MJ, Ono S (2010) Optokinetic eye movements. Encycl Neurosci 10:285–293

    Google Scholar 

  • Pastore MT, Natale SJ, Yost WA, Dorman MF (2018) Head movements allow listeners bilaterally implanted with cochlear implants to resolve front-back confusions. Ear Hear 39:1224–1231

    Article  PubMed  PubMed Central  Google Scholar 

  • Pastore MT, Yost WA, Zhou Y (2020) Cross-modal and cognitive processes in sound localization. In: Blauert J (ed) The technology of binaural understanding. Springer, Berlin

    Google Scholar 

  • Perrett S, Noble W (1997) The contribution of head motion cues to localization of low-pass noise. Percept Psychophys 59:1018–1026

    Article  CAS  PubMed  Google Scholar 

  • Pettorossi VE, Brosch M, Panichi R, Botti F, Grassi S, Troiani D (2005) Contribution of self-motion perception to acoustic target localization. Acta Otolaryngol 125:524–528

    Article  CAS  PubMed  Google Scholar 

  • Pierce AH (1901) Studies in auditory and visual space perception. Longmans, Green, and Co, New York

    Google Scholar 

  • Popper AN, Fay RR (eds) (2005) Sound source localization. Springer-Verlag, New York

    Google Scholar 

  • Rayleigh L (1876) On our perception of the direction of a source of sound. Proced Music Assoc 2:75–84

    Article  Google Scholar 

  • Rayleigh L (1907) On our perception of sound direction. Philos Mag Ser 6(13):214–232

    Article  Google Scholar 

  • Stein BE, Meredith MA (1993) The merging of the senses. MIT press, Cambridge, MA

    Google Scholar 

  • Steinhauser A (1879) The theory of binaural audition. A contribution to the theory of sound. Phil Mag 7:42–56

    Google Scholar 

  • Steinman SB, Garzia RP (2000) Foundations of binocular vision: a clinical perspective. McGraw-Hill Professional, New York/London

    Google Scholar 

  • Stevens SS, Newman EB (1936) The localization of actual sources of sound. Am J Psychol 48:297–306

    Article  Google Scholar 

  • Straka H, Dieringer N (2004) Basic organization principles of the VOR: lessons from frogs. Prog Neurobiol 73:259–309

    Article  CAS  PubMed  Google Scholar 

  • Taube JS (2007) The head direction signal: origins and sensory-motor integration. Annu Rev Neurosci 30:181–207

    Article  CAS  PubMed  Google Scholar 

  • Teuber HL (1960) Handbook of physiology. American Physiological Society, Washington D.C

    Google Scholar 

  • Thompson SP (1878) On binaural audition. Phil Mag 2:383–391

    Article  Google Scholar 

  • Van Opstal AJ (2016) The auditory system and human sound-localization behavior. Academic, Amsterdam

    Google Scholar 

  • Vliegen J (2004) Dynamic sound localization during rapid eye-head gaze shifts. J Neurosci 24:9291–9302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Hornbostel EM, Wertheimer M (1920) Über die wahrnehmung der schallrichtung. In: Akademie der wissenschaften, pp 388–396

    Google Scholar 

  • Wallach H (1938) Über die wahrnehmung der wehallrichtung. Psychol Forsch 22:238–266

    Article  Google Scholar 

  • Wallach H (1939) On sound localization. J Acoust Soc Am 10:270–274

    Article  Google Scholar 

  • Wallach H (1940) The role of head movements and vestibular and visual cues in sound localization. J Exp Psychol 27:339–368

    Article  Google Scholar 

  • Warren DH (1970) Intermodality interactions in spatial localization. Cogn Psychol 1:114–133

    Article  Google Scholar 

  • Wenzel EM, Arruda M, Kistler DJ, Wightman FL (1993) Localization using non-individualized head-related transfer functions. J Acoust Soc Am 94:111–123

    Article  CAS  PubMed  Google Scholar 

  • Wigderson E, Nelken I, Yarom Y (2016) Early multisensory intergation of self and source motion in the auditory system. PNAS 113:8308–8313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wightman FL, Kistler DJ (1997) Monaural sound localization revisited. J Acoust Soc Am 101:1050–1063

    Article  CAS  PubMed  Google Scholar 

  • Wightman FL, Kistler DJ (1999) Resolution of front-back ambiguity in spatial hearing by listener and source movement. J Acoust Soc Am 105:2841–2853

    Article  CAS  PubMed  Google Scholar 

  • Woodworth RS (1938) Experimental psychology. Henry Holt and Company, New York

    Google Scholar 

  • Yost WA (2017a) History of sound source localization: 1850-1950. POMA 30:1–15

    Google Scholar 

  • Yost WA (2017b) Sound source localization identification accuracy: envelope dependencies. J Acoust Soc Am 142:173–185

    Article  PubMed  PubMed Central  Google Scholar 

  • Yost WA, Popper AN, Fay RR (eds) (1993) Human psychophysics. Springer-Verlag, New York

    Google Scholar 

  • Yost WA, Popper AN, Fay RR (eds) (2008) Auditory perception of sound sources. Springer-Verlag, New York

    Google Scholar 

  • Yost WA, Zhong X, Najam A (2015) Judging sound rotation when listeners and sounds rotate: sound source localization is a multisystem process. J Acoust Soc Am 138:3293–3310

    Article  PubMed  Google Scholar 

  • Yost WA, Pastore MT, Pulling KR (2019) Sound-source localization as a multisystem process: the Wallach azimuth illusion. J Acoust Soc Am 146:382–398

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong X, Yost WA (2012) Relationship between postural stability and spatial hearing. J Am Acad Audiol 24:782–788

    Google Scholar 

  • Zhong X, Sun L, Yost WA (2016) Active binaural localization of multiple sound sources. Rob Auton Syst 85:83–92

    Article  Google Scholar 

Download references

Acknowledgments

We were supported by grants to William A. Yost and M. Torben Pastore from the National Institute of Deafness and Other Communication Diseases, National Institutes of Health, and from the Facebook Reality Laboratories; and to Yi Zhou from the National Science Foundation. We appreciate the assistance of Kathryn Pulling and Christopher Montagne.

Compliance with Ethics Requirements

William A. Yost declares that he has no conflict of interest.

M. Torben Pastore declares that he has no conflict of interest.

Yi Zhou declares that she has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Yost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yost, W.A., Pastore, M.T., Zhou, Y. (2021). Sound Source Localization Is a Multisystem Process. In: Litovsky, R.Y., Goupell, M.J., Fay, R.R., Popper, A.N. (eds) Binaural Hearing. Springer Handbook of Auditory Research, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-030-57100-9_3

Download citation

Publish with us

Policies and ethics