Skip to main content

Satellite Radiothermovision of Tropical Cyclones

  • Chapter
  • First Online:
Satellite Radiothermovision of Atmospheric Processes

Part of the book series: Springer Praxis Books ((PRAXIS))

  • 247 Accesses

Abstract

This chapter demonstrates the unique capabilities of the satellite radiothermovision approach for studying the processes of evolution of tropical cyclones (TC). A general description of these atmospheric phenomena and the justification of the importance of their study by remote sensing methods is given in Chap. 2. Satellite radiothermovision provides the possibility of calculating convergent and divergent latent heat fluxes generated in the vicinity of an existing TC, and, as shown in the examples of processing specific data of satellite radiometry observations, which play the determining role in his energy budget. To this end, the first section of the chapter indicates the most common characteristics and methods for assessing the energy (power) of a TC and briefly discusses the main factors that can influence its intensification and dissipation, and some approaches to their analysis. The second section describes the data used and the methods of their processing in the framework of the satellite radiothermovision approach (Ermakov et al. 2019a,b,c). The third section describes the results of an analysis of the evolution of a number of specific TCs in the field of total precipitable water (TPW) of the atmosphere, and shows the relationship between the intensification (dissipation) of TCs and the formation of convergent (divergent) latent heat fluxes that are sufficient in absolute value to explain the evolution of TCs (Ermakov et al. 2019b, 2015). The fourth section provides examples of the integrated processing of combined satellite remote sensing data that allow the study of the evolution of TCs simultaneously in the fields of TPW and the temperature of the surface layer of the ocean (SST) (Ermakov et al. 2015). Finally, in the fifth section, using the analysis of the evolution of a system of interacting TCs (twin typhoons) as an example, the flexibility is demonstrated of adapting the previously used research methods to study a wide range of diverse mesoscale atmospheric processes (Ermakov et al. 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brand S (1970) Interaction of binary tropical cyclones of the western North Pacific Ocean. J Appl Meteorol 9(3):433–441

    Article  Google Scholar 

  • Dare RA, McBride JL (2011) Sea surface temperature response to tropical cyclones. Mon Weather Rev 139(12):3798–3808

    Article  Google Scholar 

  • Dong K, Neumann CJ (1983) On the relative motion of binary tropical cyclones. Mon Weather Rev 111(5):945–953

    Article  Google Scholar 

  • Dritschel DG, Waugh DW (1992) Quantification of inelastic interaction of unequal vortices in two-dimensional vortex dynamics. Phys Fluids 4A(8):1737–1744

    Article  Google Scholar 

  • Dworak VF (1975) Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon Weather Rev 103(5):420–430

    Article  Google Scholar 

  • Emanuel KA (1999) The power of a hurricane: an example of reckless driving on the information superhighway. Weather 54(4):107–108

    Article  Google Scholar 

  • Emanuel KA (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436(7051):686–688

    Article  Google Scholar 

  • Ermakov DM, Raev MD, Suslov AI, Sharkov EA (2007) Electronic long-standing database for the global radiothermal field of the earth in context of multy-scale investigation of the atmosphere-ocean system. Issledovanie Zemli iz kosmosa (Earth Research from Space) 1:7–13 (in Russian)

    Google Scholar 

  • Ermakov D, Chernushich A, Sharkov E, Shramkov Ya (2011) Stream Handler system: an experience of application to investigation of global tropical cyclogenesis [electronic resource]. In: Proceedings of 34th international symposium on remote sensing of environment, Sydney, 10–15 April, 2011. http://www.isprs.org/proceedings/2011/ISRSE-34/211104015Final00456.pdf

  • Ermakov DM, Chernushich AP, Sharkov EA, Pokrovskaya IV (2013a) Searching for an energy source of the intensification of tropical cyclone Katrina using microwave satellite sensing data. Izvestiya Atmos Oceanic Phys 49(9):963–973

    Article  Google Scholar 

  • Ermakov DM, Sharkov EA, Pokrovskaya IV, Chernushich AP (2013b) Revealing the energy sources of alternating intensity regimes of the evolving Alberto tropical cyclone using microwave satellite sensing data. Izvestiya Atmos Oceanic Phys 49(9):974–985

    Article  Google Scholar 

  • Ermakov DM, Sharkov EA, Chernushich AP (2015) Satellite radiothermovision of atmospheric mesoscale processes: case study of tropical cyclones. In: The international archives of the photogrammetry, remote sensing and spatial information sciences—ISPRS Archives, vol XL(7/W3), pp 179–186

    Google Scholar 

  • Ermakov DM, Sharkov EA, Chernushich AP (2016) A multisensory algorithm of satellite radiothermovision. Izvestiya Atmos Oceanic Phys 52(9):1172–1180

    Article  Google Scholar 

  • Ermakov DM, Sharkov EA, Chernushich AP (2017) Satellite radiothermovision analysis of the evolution of a system of interacting typhoons. Izvestiya Atmos Oceanic Phys 53(9):945–954

    Article  Google Scholar 

  • Ermakov DM, Sharkov EA, Chernushich AP (2019a) Evaluation of tropospheric latent heat advective fluxes over the ocean by the animated analysis of satellite radiothermal remote data. Izvestiya Atmos Oceanic Phys 55(9):1125–1132. https://doi.org/10.1134/S0001433819090160

    Article  Google Scholar 

  • Ermakov DM, Sharkov EA, Chernushich AP (2019b) Role of tropospheric latent heat advective fluxes in the intensification of tropical cyclones. Izvestiya Atmos Oceanic Phys 55(9):1254–1265. https://doi.org/10.1134/S0001433819090172

    Article  Google Scholar 

  • Ermakov DM, Raev MD, Chernushich AP, Sharkov EA (2019c) Algorithm for construction of global ocean-atmosphere radiothermal fields with high spatiotemporal sampling based on satellite microwave measurements. Izvestiya Atmos Oceanic Phys 55(9):1041–1052. https://doi.org/10.1134/S0001433819090159

    Article  Google Scholar 

  • Falkovich AI, Khain AP, Ginis I (1995) Motion and evolution of binary tropical cyclones in a coupled atmosphere-ocean numerical model. Mon Weather Rev 123(5):1345–1363

    Article  Google Scholar 

  • Ferrel W (1856) An essay on the winds and the currents of the ocean. Book and Job Printers, Cameron & Fall, p 43

    Google Scholar 

  • Frank WM (1977) The structure and energetics of the tropical cyclone, II: dynamics and energetics. Monthly Weather Rev 105(9):1136–1150

    Google Scholar 

  • Fritz C, Wang Z (2014) Water vapor budget in a developing tropical cyclone and its implication for tropical cyclone formation. J Atmos Sci 71(11):4321–4332

    Article  Google Scholar 

  • Fujiwhara S (1921) The mutual tendency towards symmetry of motion and its application as a principal in meteorology. Quarterly J Royal Meteorol Soc 47(200):287–292

    Article  Google Scholar 

  • Fujiwhara S (1923) On the growth and decay of vortical systems. Quarterly J Royal Meteorol Soc 49(206):75–104

    Article  Google Scholar 

  • Gentemann C, Smith D, Wentz F (2000) Microwave SST correlation with cyclone intensity [electronic resource]. In: Proceedings of 24th conference on hurricanes and tropical meteorology, USA, Florida, Fort Lauderdale, 22–27 May, 2000. http://images.remss.com/papers/rssconf/gentemann_ams_2000_FtLauderdale_SST.pdf

  • Gentemann CL, Donlon CJ, Stuart-Menteth A, Wentz FJ (2003) Diurnal signals in satellite sea surface temperature measurements. Geophys Res Lett 30(3):1140. https://doi.org/10.1029/2002GL016291

    Article  Google Scholar 

  • Golitsyn GS (2008) Polar lows and tropical hurricanes: their energy and sizes and a quantitative criterion for their generation. Izvestiya Atmos Oceanic Phys 44(5):537–547. https://doi.org/10.1134/s0001433808050010

  • Gray WM (1982) Tropical cyclone genesis and intensification. In: Bengtsson L, Lighthill J (eds) Intense atmospheric vortices. Topics in atmospheric and oceanographic sciences. Springer, Berlin, Heidelberg, pp 3–20. https://doi.org/10.1007/978-3-642-81866-0_1

  • Hart RE, Maue RN, Watson MC (2007) Estimating local memory of tropical cyclones through MPI anomaly evolution. Mon Weather Rev 135(12):3990–4005

    Article  Google Scholar 

  • Hoover EW (1961) Relative motion of hurricane pairs. Mon Weather Rev 89(7):251–255

    Article  Google Scholar 

  • Ivanov VN, Pudov VD (1977) Structure of the thermal wake of typhoon Tess in the ocean and estimation of the certain energy-exchange parameters under storm conditions. Typhoon-75 Gidrometidat. 1:66–82. (in Russian)

    Google Scholar 

  • Kaplan J, DeMaria M, Knaff JA (2010) A revised tropical cyclone rapid intensification index for the Atlantic and Eastern North Pacific basins. Weather Forecast 25(1):220–241

    Article  Google Scholar 

  • Korolev VS, Petrichenko SA, Pudov VD (1990) Heat and moisture exchange between the ocean and atmosphere in tropical storms Tess and Skip. Sov Meteorol Hydrol (English translation) 3:92–94

    Google Scholar 

  • Kudryavtsev V, Monzikova A, Combot C, Chapron B, Reul N, Quilfen Y (2019) A simplified model for the baroclinic and barotropic ocean response to moving tropical cyclones: 1. Satellite observations. J Geophys Res Oceans 124(5):3446–3461

    Google Scholar 

  • Kudryavtsev V, Monzikova A, Combot C, Chapron B, Reul N (2019) A simplified model for the baroclinic and barotropic ocean response to moving tropical cyclones: 2. Model and simulations. J Geophys Res Oceans 124(5):3462–3485

    Google Scholar 

  • Landsea CW How much energy does a hurricane release? [electronic resource]. NOAA, AOML. http://www.aoml.noaa.gov/hrd/tcfaq/D7.html

  • Levina GV (2018) On the path from the turbulent vortex dynamo theory to diagnosis of tropical cyclogenesis. Open J Fluid Dyn 8(1):86–114

    Article  Google Scholar 

  • Lin I-I, Pun I-F, Lien C-C (2014) “Category-6” supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophys Res Lett 41(23):8547–8553

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG, Nefiodov AV, Chikunov AV, Sheil D, Nobre AD, Li B-L (2017) Fuel for cyclones: the water vapor budget of a hurricane as dependent on its movement. Atmos Res 193:216–230

    Article  Google Scholar 

  • Melnikov VP, Shumlsky JJ (1997) The vortex phenomena at the atmosphere. Institute of the earth’s cryosphere, Tyumen, p 45. (In Russian)

    Google Scholar 

  • Microwave OI SST Product Description. Remote Sensing Systems. [electronic resource]. http://www.remss.com/measurements/sea-surface-temperature/oisst-description/

  • Montgomery M, Farrell B (1993) Tropical cyclone formation. J Atmos Scences 50(2):285–310

    Article  Google Scholar 

  • Mori N, Kato M, Kim S, Mase H, Shibutani Y, Takemi T, Tsuboki K, Yasuda T (2014) Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf. Geophys Res Lett 41(14):5106–5113

    Article  Google Scholar 

  • Palmén E, Newton CW (1969) Atmospheric circulation systems: their structural and physical interpretation, vol XVIII. Academic Press. New York, p 606

    Google Scholar 

  • Permyakov MS (2007) Tropical cyclones: formation and development, interaction with the ocean: abstract. dis…. Dr. Phys. Sciences. Vladivostok, Russia, p 36. (in Russian)

    Google Scholar 

  • Petty GW (1990) On the response of the special sensor microwave/imager to the marine environment—implications for atmospheric parameter retrievals. A dissertation … for the degree of doctor of philosophy. University of Washington, Seattle, USA, p 313

    Google Scholar 

  • Pokrovskaya IV, Sharkov EA (2006) Tropical cyclones and tropical disturbances of the world ocean: chronology and evolution. Version 3.1 (1983–2005). Poligraph Servis, p 728

    Google Scholar 

  • Pokrovskaya IV, Sharkov EA (2016) Tropical cyclones and tropical disturbances of the world ocean: chronology and evolution. Version 5.1 (2011–2015). University Book House, p 164. ISBN 978-5-91304-661-1

    Google Scholar 

  • Prieto R, McNoldy BD, Fulton SR, Schubert WH (2003) A classification of binary tropical cyclone-like vortex interactions. Mon Weather Rev 131(11):2656–2666

    Article  Google Scholar 

  • Rotunno R, Emanuel KA (1987) An air–sea interaction theory for tropical cyclones. Part II: evolutionary study using a nonhydrostatic axisymmetric numerical model. J Atmos Sci 44(3):542–561

    Google Scholar 

  • Ruprecht E (1996) Atmospheric water vapor and cloud water: an overview. Adv Space Res 18(7):5–16

    Article  Google Scholar 

  • Sharkov EA (2012) Global tropical cyclogenesis. 2nd edn. Springer, Praxis, p 603

    Google Scholar 

  • Trenberth KE, Davis CA, Fasullo J (2007) Water and energy budget of hurricanes: case studies of Ivan and Katrina. J Geophys Res 112(D23):D23106. https://doi.org/10.1029/2006JD008303

    Article  Google Scholar 

  • Wentz F (1997) A well-calibrated ocean algorithm for special sensor microwave/imager. J Geophys Res 102(C4):8703–8718

    Article  Google Scholar 

  • Wentz FJ, Hilburn KA, Smith DK (2012) Remote sensing systems DMSP SSM/I, SSMIS daily environmental suite on 0.25 deg grid, Version 7, 8 [electronic resource]. Remote Sensing Systems, Santa Rosa, CA. http://www.remss.com/missions/ssmi/

  • Zhao H, Tang D, Wang Y (2008) Comparison of phytoplankton blooms triggered by two typhoons with different intensities and translation speeds in the South China sea. Mar Ecol Prog Ser 365:57–65

    Article  Google Scholar 

  • Ziv B, Alpert P (1995) Rotation of binary cyclones—a data analysis study. J Atmos Sci 52(9):1357–1369

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry M. Ermakov .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ermakov, D.M. (2021). Satellite Radiothermovision of Tropical Cyclones. In: Satellite Radiothermovision of Atmospheric Processes. Springer Praxis Books. Springer, Cham. https://doi.org/10.1007/978-3-030-57085-9_4

Download citation

Publish with us

Policies and ethics