Skip to main content

Stem Cell Therapy for Lymphedema

  • Chapter
  • First Online:
Stem Cell Therapy for Vascular Diseases

Abstract

Lymphedema is a chronic disease with significant morbidity to many patients. Regenerative medicine, cell therapies in particular, has the potential to repair broken physiologic processes and restore health. Vascular regeneration of small vessels is particularly well suited to cellular therapies. This is important because the standard treatment of lymphedema has been frustrated by limited symptom relief, leading many patients to be managed but not cured. Recently, specific molecular mediators have been identified that can be targeted pharmacologically, and it is now known that lymphedema can be reversed, even in the setting of long-standing and/or severe disease. Cell therapies hold promise therapeutically because they can correct deranged pathways in a multi-modal fashion, and this may provide sustained (and possibly complete) regeneration through the recruitment of native reparative cells. This chapter outlines the current symptom-management strategies, the contemporary role of operative therapies in this patient population, and then summarizes existing regenerative medicine approaches being developed to treat lymphedema.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kornuta JA, Nepiyushchikh Z, Gasheva OY, Mukherjee A, Zawieja DC, Dixon JB. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels. Am J Physiol Regul Integr Comp Physiol. 2015;309(9):R1122–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mukherjee A, Hooks J, Nepiyushchikh Z, Dixon JB. Entrainment of lymphatic contraction to oscillatory flow. Sci Rep. 2019;9(1):5840.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Singh AP, Foley J, Tandon A, Phadke D, Karimi Kinyamu H, Archer TK. A role for BRG1 in the regulation of genes required for development of the lymphatic system. Oncotarget. 2017;8(33):54925–38.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alders M, Al-Gazali L, Cordeiro I, et al. Hennekam syndrome can be caused by FAT4 mutations and be allelic to Van Maldergem syndrome. Hum Genet. 2014;133(9):1161–7.

    Article  CAS  PubMed  Google Scholar 

  5. Pujol F, Hodgson T, Martinez-Corral I, et al. Dachsous1-Fat4 signaling controls endothelial cell polarization during lymphatic valve morphogenesis-brief report. Arterioscler Thromb Vasc Biol. 2017;37(9):1732–5.

    Article  CAS  PubMed  Google Scholar 

  6. Jung M, Cordes S, Zou J, et al. GATA2 deficiency and human hematopoietic development modeled using induced pluripotent stem cells. Blood Adv. 2018;2(23):3553–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. DiSipio T, Rye S, Newman B, Hayes S. Incidence of unilateral arm lymphoedema after breast cancer: a systematic review and meta-analysis. Lancet Oncol. 2013;14(6):500–15.

    Article  PubMed  Google Scholar 

  8. Executive C. The diagnosis and treatment of peripheral lymphedema: 2016 consensus document of the International Society of Lymphology. Lymphology. 2016;49(4):170–84.

    Google Scholar 

  9. Kim SI, Lim MC, Lee JS, et al. Impact of lower limb lymphedema on quality of life in gynecologic cancer survivors after pelvic lymph node dissection. Eur J Obstet Gynecol Reprod Biol. 2015;192:31–6.

    Article  PubMed  Google Scholar 

  10. Cromwell KD, Chiang YJ, Armer J, et al. Is surviving enough? Coping and impact on activities of daily living among melanoma patients with lymphoedema. Eur J Cancer Care (Engl). 2015;24(5):724–33.

    Article  CAS  Google Scholar 

  11. Rockson SG. Lymphedema. Vasc Med. 2016;21(1):77–81.

    Article  PubMed  Google Scholar 

  12. Armer JM, Stewart BR. A comparison of four diagnostic criteria for lymphedema in a post-breast cancer population. Lymphat Res Biol. 2005;3(4):208–17.

    Article  PubMed  Google Scholar 

  13. Stout Gergich NL, Pfalzer LA, McGarvey C, Springer B, Gerber LH, Soballe P. Preoperative assessment enables the early diagnosis and successful treatment of lymphedema. Cancer. 2008;112(12):2809–19.

    Article  PubMed  Google Scholar 

  14. Desai SS, Shao M. Vascular outcomes C. Superior clinical, quality of life, functional, and health economic outcomes with pneumatic compression therapy for lymphedema. Ann Vasc Surg. 2019;63:298.

    Article  PubMed  Google Scholar 

  15. Son A, O'Donnell TF Jr, Izhakoff J, Gaebler JA, Niecko T, Iafrati MA. Lymphedema-associated comorbidities and treatment gap. J Vasc Surg Venous Lymphat Disord. 2019;7(5):724–30.

    Article  PubMed  Google Scholar 

  16. Miller TA. A surgical approach to lymphedema. Am J Surg. 1977;134(2):191–5.

    Article  CAS  PubMed  Google Scholar 

  17. Charles RH. The surgical treatment of elephantiasis. Ind Med Gaz. 1901;36(3):84–99.

    PubMed  PubMed Central  Google Scholar 

  18. Kobayashi MR, Miller TA. Lymphedema. Clin Plast Surg. 1987;14(2):303–13.

    Article  CAS  PubMed  Google Scholar 

  19. Mavili ME, Naldoken S, Safak T. Modified Charles operation for primary fibrosclerotic lymphedema. Lymphology. 1994;27(1):14–20.

    CAS  PubMed  Google Scholar 

  20. Campisi C. Use of autologous interposition vein graft in management of lymphedema: preliminary experimental and clinical observations. Lymphology. 1991;24(2):71–6.

    CAS  PubMed  Google Scholar 

  21. Chang DW. Lymphaticovenular bypass for lymphedema management in breast cancer patients: a prospective study. Plast Reconstr Surg. 2010;126(3):752–8.

    Article  CAS  PubMed  Google Scholar 

  22. Ho LC, Lai MF, Kennedy PJ. Micro-lymphatic bypass in the treatment of obstructive lymphoedema of the arm: case report of a new technique. Br J Plast Surg. 1983;36(3):350–7.

    Article  CAS  PubMed  Google Scholar 

  23. Koshima I, Inagawa K, Urushibara K, Moriguchi T. Supermicrosurgical lymphaticovenular anastomosis for the treatment of lymphedema in the upper extremities. J Reconstr Microsurg. 2000;16(6):437–42.

    Article  CAS  PubMed  Google Scholar 

  24. Chang DW, Suami H, Skoracki R. A prospective analysis of 100 consecutive lymphovenous bypass cases for treatment of extremity lymphedema. Plast Reconstr Surg. 2013;132(5):1305–14.

    Article  CAS  PubMed  Google Scholar 

  25. Raju A, Chang DW. Vascularized lymph node transfer for treatment of lymphedema: a comprehensive literature review. Ann Surg. 2015;261(5):1013–23.

    Article  PubMed  Google Scholar 

  26. Cheng MH, Chen SC, Henry SL, Tan BK, Lin MC, Huang JJ. Vascularized groin lymph node flap transfer for postmastectomy upper limb lymphedema: flap anatomy, recipient sites, and outcomes. Plast Reconstr Surg. 2013;131(6):1286–98.

    Article  CAS  PubMed  Google Scholar 

  27. Lin CH, Ali R, Chen SC, et al. Vascularized groin lymph node transfer using the wrist as a recipient site for management of postmastectomy upper extremity lymphedema. Plast Reconstr Surg. 2009;123(4):1265–75.

    Article  CAS  PubMed  Google Scholar 

  28. Gianesini S, Obi A, Onida S, et al. Global guidelines trends and controversies in lower limb venous and lymphatic disease: narrative literature revision and experts' opinions following the vWINter international meeting in phlebology, lymphology & aesthetics, 23-25 January 2019. Phlebology. 2019;34(1 Suppl):4–66.

    Article  PubMed  Google Scholar 

  29. Patel KM, Lin CY, Cheng MH. A prospective evaluation of lymphedema-specific quality-of-life outcomes following vascularized lymph node transfer. Ann Surg Oncol. 2015;22(7):2424–30.

    Article  PubMed  Google Scholar 

  30. Pons G, Masia J, Loschi P, Nardulli ML, Duch J. A case of donor-site lymphoedema after lymph node-superficial circumflex iliac artery perforator flap transfer. J Plast Reconstr Aesthet Surg. 2014;67(1):119–23.

    Article  PubMed  Google Scholar 

  31. Viitanen TP, Maki MT, Seppanen MP, Suominen EA, Saaristo AM. Donor-site lymphatic function after microvascular lymph node transfer. Plast Reconstr Surg. 2012;130(6):1246–53.

    Article  CAS  PubMed  Google Scholar 

  32. Dayan JH, Dayan E, Kagen A, et al. The use of magnetic resonance angiography in vascularized groin lymph node transfer: an anatomic study. J Reconstr Microsurg. 2014;30(1):41–5.

    Article  PubMed  Google Scholar 

  33. Carl HM, Walia G, Bello R, et al. Systematic review of the surgical treatment of extremity lymphedema. J Reconstr Microsurg. 2017;33(6):412–25.

    Article  PubMed  Google Scholar 

  34. Pappalardo M, Chang DW, Masia J, Koshima I, Cheng MH. Summary of hands-on supermicrosurgery course and live surgeries at 8th world symposium for lymphedema surgery. J Surg Oncol. 2019;121:8.

    PubMed  Google Scholar 

  35. Rauniyar K, Jha SK, Jeltsch M. Biology of vascular endothelial growth factor C in the morphogenesis of lymphatic vessels. Front Bioeng Biotechnol. 2018;6:7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Iwata Y, Fujimoto Y, Morino T, et al. Effects of stem cell mobilization by granulocyte colony-stimulating factor on endothelial function after sirolimus-eluting stent implantation: a double-blind, randomized, placebo-controlled clinical trial. Am Heart J. 2013;165(3):408–14.

    Article  CAS  PubMed  Google Scholar 

  37. Sun Y, Lu B, Deng J, et al. IL-7 enhances the differentiation of adipose-derived stem cells toward lymphatic endothelial cells through AKT signaling. Cell Biol Int. 2019;43(4):394–401.

    Article  CAS  PubMed  Google Scholar 

  38. Lee CY, Kang JY, Lim S, Ham O, Chang W, Jang DH. Hypoxic conditioned medium from mesenchymal stem cells promotes lymphangiogenesis by regulation of mitochondrial-related proteins. Stem Cell Res Ther. 2016;7:38.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dartsch N, Schulte D, Hagerling R, Kiefer F, Vestweber D. Fusing VE-cadherin to alpha-catenin impairs fetal liver hematopoiesis and lymph but not blood vessel formation. Mol Cell Biol. 2014;34(9):1634–48.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Deng J, Dai T, Sun Y, et al. Overexpression of Prox1 induces the differentiation of human adipose-derived stem cells into lymphatic endothelial-like cells in vitro. Cell Reprogram. 2017;19(1):54–63.

    Article  CAS  PubMed  Google Scholar 

  41. Rockson SG. Lymphatic medicine: paradoxically and unnecessarily ignored. Lymphat Res Biol. 2017;15(4):315–6.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen CE, Chiang NJ, Perng CK, Ma H, Lin CH. Review of preclinical and clinical studies of using cell-based therapy for secondary lymphedema. J Surg Oncol. 2019;121:109.

    PubMed  Google Scholar 

  43. Tian W, Rockson SG, Jiang X, et al. Leukotriene B4 antagonism ameliorates experimental lymphedema. Sci Transl Med. 2017;9(389):eaal3920.

    Article  PubMed  Google Scholar 

  44. Strassburg S, Torio-Padron N, Finkenzeller G, Frankenschmidt A, Stark GB. Adipose-derived stem cells support lymphangiogenic parameters in vitro. J Cell Biochem. 2016;117(11):2620–9.

    Article  CAS  PubMed  Google Scholar 

  45. Wang S, Yamakawa M, Santosa SM, et al. Quantification of angiogenesis and lymphangiogenesis in the dual ex vivo aortic and thoracic duct assay. Protein Pept Lett. 2019;27:30.

    Article  Google Scholar 

  46. Yan A, Avraham T, Zampell JC, Haviv YS, Weitman E, Mehrara BJ. Adipose-derived stem cells promote lymphangiogenesis in response to VEGF-C stimulation or TGF-beta1 inhibition. Future Oncol. 2011;7(12):1457–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Conrad C, Niess H, Huss R, et al. Multipotent mesenchymal stem cells acquire a lymphendothelial phenotype and enhance lymphatic regeneration in vivo. Circulation. 2009;119(2):281–9.

    Article  PubMed  Google Scholar 

  48. Takeda K, Sowa Y, Nishino K, Itoh K, Fushiki S. Adipose-derived stem cells promote proliferation, migration, and tube formation of lymphatic endothelial cells in vitro by secreting lymphangiogenic factors. Ann Plast Surg. 2015;74(6):728–36.

    Article  CAS  PubMed  Google Scholar 

  49. Saijo H, Suzuki K, Yoshimoto H, Imamura Y, Yamashita S, Tanaka K. Paracrine effects of adipose-derived stem cells promote lymphangiogenesis in irradiated lymphatic endothelial cells. Plast Reconstr Surg. 2019;143(6):1189e–200e.

    Article  CAS  PubMed  Google Scholar 

  50. Ackermann M, Wettstein R, Senaldi C, et al. Impact of platelet rich plasma and adipose stem cells on lymphangiogenesis in a murine tail lymphedema model. Microvasc Res. 2015;102:78–85.

    Article  PubMed  Google Scholar 

  51. Hayashida K, Yoshida S, Yoshimoto H, et al. Adipose-derived stem cells and vascularized lymph node transfers successfully treat Mouse Hindlimb secondary lymphedema by early reconnection of the lymphatic system and lymphangiogenesis. Plast Reconstr Surg. 2017;139(3):639–51.

    Article  CAS  PubMed  Google Scholar 

  52. Yoshida S, Hamuy R, Hamada Y, Yoshimoto H, Hirano A, Akita S. Adipose-derived stem cell transplantation for therapeutic lymphangiogenesis in a mouse secondary lymphedema model. Regen Med. 2015;10(5):549–62.

    Article  CAS  PubMed  Google Scholar 

  53. Hwang JH, Kim IG, Lee JY, et al. Therapeutic lymphangiogenesis using stem cell and VEGF-C hydrogel. Biomaterials. 2011;32(19):4415–23.

    Article  CAS  PubMed  Google Scholar 

  54. Shimizu Y, Shibata R, Shintani S, Ishii M, Murohara T. Therapeutic lymphangiogenesis with implantation of adipose-derived regenerative cells. J Am Heart Assoc. 2012;1(4):e000877.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhou H, Wang M, Hou C, Jin X, Wu X. Exogenous VEGF-C augments the efficacy of therapeutic lymphangiogenesis induced by allogenic bone marrow stromal cells in a rabbit model of limb secondary lymphedema. Jpn J Clin Oncol. 2011;41(7):841–6.

    Article  PubMed  Google Scholar 

  56. Gousopoulos E, Proulx ST, Bachmann SB, et al. Regulatory T cell transfer ameliorates lymphedema and promotes lymphatic vessel function. JCI Insight. 2016;1(16):e89081.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Robinson ST, Douglas AM, Chadid T, et al. A novel platelet lysate hydrogel for endothelial cell and mesenchymal stem cell-directed neovascularization. Acta Biomater. 2016;36:86–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Beerens M, Aranguren XL, Hendrickx B, et al. Multipotent adult progenitor cells support lymphatic regeneration at multiple anatomical levels during wound healing and lymphedema. Sci Rep. 2018;8(1):3852.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tashiro K, Feng J, Wu SH, et al. Pathological changes of adipose tissue in secondary lymphoedema. Br J Dermatol. 2017;177(1):158–67.

    Article  CAS  PubMed  Google Scholar 

  60. Kondo K, Shintani S, Shibata R, et al. Implantation of adipose-derived regenerative cells enhances ischemia-induced angiogenesis. Arterioscler Thromb Vasc Biol. 2009;29(1):61–6.

    Article  CAS  PubMed  Google Scholar 

  61. Levi B, Glotzbach JP, Sorkin M, et al. Molecular analysis and differentiation capacity of adipose-derived stem cells from lymphedema tissue. Plast Reconstr Surg. 2013;132(3):580–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee HC, An SG, Lee HW, et al. Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia. Circ J. 2012;76(7):1750–60.

    Article  CAS  PubMed  Google Scholar 

  63. Chadid T, Morris A, Surowiec A, et al. Reversible secretome and signaling defects in diabetic mesenchymal stem cells from peripheral arterial disease patients. J Vasc Surg. 2018;68(6S):137S–151S e132.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Morris AD, Dalal S, Li H, Brewster LP. Human diabetic mesenchymal stem cells from peripheral arterial disease patients promote angiogenesis through unique secretome signatures. Surgery. 2018;163(4):870–6.

    Article  PubMed  Google Scholar 

  65. Rockson SG, Tian W, Jiang X, et al. Pilot studies demonstrate the potential benefits of antiinflammatory therapy in human lymphedema. JCI Insight. 2018;3(20):e123775.

    Article  PubMed Central  Google Scholar 

  66. Powell RJ, Marston WA, Berceli SA, et al. Cellular therapy with Ixmyelocel-T to treat critical limb ischemia: the randomized, double-blind, placebo-controlled RESTORE-CLI trial. Mol Ther. 2012;20(6):1280–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Forte AJ, Boczar D, Huayllani MT, Cinotto GJ, McLaughlin S. Targeted therapies in surgical treatment of lymphedema: a systematic review. Cureus. 2019;11(8):e5397.

    PubMed  PubMed Central  Google Scholar 

  68. Ismail AM, Abdou SM, Abdelnaby AY, Hamdy MA, El Saka AA, Gawaly A. Stem cell therapy using bone marrow-derived mononuclear cells in treatment of lower limb lymphedema: a randomized controlled clinical trial. Lymphat Res Biol. 2018;16(3):270–7.

    Article  PubMed  Google Scholar 

  69. Toyserkani NM, Jensen CH, Sheikh SP, Sorensen JA. Cell-assisted Lipotransfer using autologous adipose-derived stromal cells for alleviation of breast cancer-related lymphedema. Stem Cells Transl Med. 2016;5(7):857–9.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Toyserkani NM, Jensen CH, Tabatabaeifar S, et al. Adipose-derived regenerative cells and fat grafting for treating breast cancer-related lymphedema: Lymphoscintigraphic evaluation with 1 year of follow-up. J Plast Reconstr Aesthet Surg. 2019;72(1):71–7.

    Article  CAS  PubMed  Google Scholar 

  71. Maldonado GE, Perez CA, Covarrubias EE, et al. Autologous stem cells for the treatment of post-mastectomy lymphedema: a pilot study. Cytotherapy. 2011;13(10):1249–55.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Brewster’s data and time on this chapter was supported in part by his research funding from the NIH and VA; NHLBI R01HL143348; VABLRD IO1BX004707; and VARRD I21RX003188. The authors are grateful to the academic support of Emory University’s Department of Surgery, including our leadership, Drs. John F. Sweeney, Grant Carlson, and Will Jordan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke Brewster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McLaughlin, D., Cheng, A., Brewster, L. (2021). Stem Cell Therapy for Lymphedema. In: Navarro, T.P., Minchillo Lopes, L.L.N., Dardik, A. (eds) Stem Cell Therapy for Vascular Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-56954-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56954-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56953-2

  • Online ISBN: 978-3-030-56954-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics