Skip to main content

Stem Cell Therapy for Ophthalmic Vascular Disease

  • Chapter
  • First Online:
Stem Cell Therapy for Vascular Diseases

Abstract

Stem cell therapy has the potential to improve the natural history of several retinal degenerative diseases. Treatments based on cell regeneration, and or replacement, has transformative scientific potential in the management of some of the most devastating ocular diseases, including some that currently have no curative treatment. Two mechanisms of action have been proposed: regenerative or trophic. Currently there are no FDA-approved stem cell therapies for retinal disease. At present more than 50 stem/progenitor cell therapy trials for retinal disease are listed on the www.clinicaltrials.gov website. These studies use three sources of cells: pluripotent, fetal, and postnatal (“adult stem cells”). In this chapter we summarize key concepts, as well as early safety and efficacy signals from clinical trials, for stem/progenitor cell-based interventions for retinal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levin LA, Miller JW, Zack DJ, Friedlander M, Smith LEH. Special commentary: early clinical development of cell replacement therapy: considerations for the National eye Institute audacious goals initiative. Ophthalmology. 2017;124(7):926–34.

    PubMed  PubMed Central  Google Scholar 

  2. Mehat MS, Sundaram V, Ripamonti C, Robson AG, Smith AJ, Borooah S, et al. Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration. Ophthalmology. 2018;125(11):1765–75.

    PubMed  PubMed Central  Google Scholar 

  3. Krohne TU, Westenskow PD, Kurihara T, Friedlander DF, Lehmann M, Dorsey AL, et al. Generation of retina pigment epithelial cells from small molecules and OCT4 reprogrammed human induced pluripotent stem cells. Stem Cells Transl Med. 2012;1(2):96–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zahir T, Klassen H, Young MJ. Effects of ciliary neurotrophic factor on differentiation of late retinal progenitor cells. Stem Cells. 2005;23(3):424–32.

    CAS  PubMed  Google Scholar 

  5. Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T, Watanabe K, et al. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci. 2009;122(Pt 17):3169–79.

    CAS  PubMed  Google Scholar 

  6. Young MJ, Ray J, Whiteley SJ, Klassen H, Gage FH. Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature dystrophic rats. Mol Cell Neurosci. 2000;16(3):197–205.

    CAS  PubMed  Google Scholar 

  7. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85(3):845–81.

    CAS  PubMed  Google Scholar 

  8. Young MJ. Stem cells in the mammalian eye: a tool for retinal repair. APMIS. 2005;113(11–12):845–57.

    PubMed  Google Scholar 

  9. Schmitt S, Aftab U, Jiang C, Redenti S, Klassen H, Miljan E, et al. Molecular characterization of human retinal progenitor cells. Invest Ophthalmol Vis Sci. 2009;50(12):5901–8.

    PubMed  Google Scholar 

  10. Artero Castro A, Rodríguez Jimenez FJ, Jendelova P, Erceg S. Deciphering retinal diseases through the generation of three dimensional stem cell-derived organoids. Stem Cells. 2019;37:1496.

    Google Scholar 

  11. Mazzilli JL, Domozhirov AY, Mueller-Ortiz SL, Garcia CA, Wetsel RA, Zsigmond EM. Derivation and characterization of the human embryonic stem cell line CR-4: differentiation to human retinal pigment epithelial cells. Stem Cell Res. 2017;18:37–40.

    CAS  PubMed  Google Scholar 

  12. Royall AH, Frankenberg S, Pask AJ, Holland PWH. Of eyes and embryos: subfunctionalization of the CRX homeobox gene in mammalian evolution. Proc Biol Sci. 2019;286(1907):20190830.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Garita-Hernandez M, Lampič M, Chaffiol A, Guibbal L, Routet F, Santos-Ferreira T, et al. Restoration of visual function by transplantation of optogenetically engineered photoreceptors. Nat Commun. 2019;10(1):4524.

    PubMed  PubMed Central  Google Scholar 

  14. Friedman DS, O'Colmain BJ, Munoz B, Tomany SC, McCarty C, de Jong PT, et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol. 2004;122(4):564–72.

    PubMed  Google Scholar 

  15. Rao RC, Dedania VS, Johnson MW. Stem cells for retinal disease: a perspective on the promise and perils. Am J Ophthalmol. 2017;179:32–8.

    PubMed  Google Scholar 

  16. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012;10(6):771–85.

    CAS  PubMed  Google Scholar 

  17. Kuwahara A, Ozone C, Nakano T, Saito K, Eiraku M, Sasai Y. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat Commun. 2015;6:6286.

    CAS  PubMed  Google Scholar 

  18. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713–20.

    CAS  PubMed  Google Scholar 

  19. Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509–16.

    PubMed  Google Scholar 

  20. Mandai M, Kurimoto Y, Takahashi M. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;377(8):792–3.

    PubMed  Google Scholar 

  21. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    CAS  PubMed  Google Scholar 

  22. Bertelli PM, Pedrini E, Guduric-Fuchs J, Peixoto E, Pathak V, Stitt AW, et al. Vascular regeneration for ischemic retinopathies: Hope from cell therapies. Curr Eye Res. 2019;45:372.

    PubMed  Google Scholar 

  23. MacLaren RE, Buch PK, Smith AJ, Balaggan KS, MacNeil A, Taylor JS, et al. CNTF gene transfer protects ganglion cells in rat retinae undergoing focal injury and branch vessel occlusion. Exp Eye Res. 2006;83(5):1118–27.

    CAS  PubMed  Google Scholar 

  24. MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, et al. Retinal repair by transplantation of photoreceptor precursors. Nature. 2006;444(7116):203–7.

    CAS  PubMed  Google Scholar 

  25. Gonzalez-Cordero A, West EL, Pearson RA, Duran Y, Carvalho LS, Chu CJ, et al. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat Biotechnol. 2013;31(8):741–7.

    CAS  PubMed  Google Scholar 

  26. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A. 2000;97(26):14720–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang P, Seiler MJ, Aramant RB, Whittemore SR. In vitro isolation and expansion of human retinal progenitor cells. Exp Neurol. 2002;177(1):326–31.

    CAS  PubMed  Google Scholar 

  28. Ho AC, Chang TS, Samuel M, Williamson P, Willenbucher RF, Malone T. Experience with a subretinal cell-based therapy in patients with geographic atrophy secondary to age-related macular degeneration. Am J Ophthalmol. 2017;179:67–80.

    PubMed  Google Scholar 

  29. Yamanaka S, Takahashi K. Induction of pluripotent stem cells from mouse fibroblast cultures. Tanpakushitsu Kakusan Koso. 2006;51(15):2346–51.

    CAS  PubMed  Google Scholar 

  30. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    CAS  PubMed  Google Scholar 

  31. Ji SL, Tang SB. Differentiation of retinal ganglion cells from induced pluripotent stem cells: a review. Int J Ophthalmol. 2019;12(1):152–60.

    PubMed  PubMed Central  Google Scholar 

  32. Jayakody SA, Gonzalez-Cordero A, Ali RR, Pearson RA. Cellular strategies for retinal repair by photoreceptor replacement. Prog Retin Eye Res. 2015;46:31–66.

    PubMed  Google Scholar 

  33. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    CAS  PubMed  Google Scholar 

  34. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(8):348–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009;324(5928):797–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rabesandratana O, Goureau O, Orieux G. Pluripotent stem cell-based approaches to explore and treat optic neuropathies. Front Neurosci. 2018;12:651.

    PubMed  PubMed Central  Google Scholar 

  37. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 2009;458(7239):766–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature. 2009;458(7239):771–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bracha P, Moore NA, Ciulla TA. Induced pluripotent stem cell-based therapy for age-related macular degeneration. Expert Opin Biol Ther. 2017;17(9):1113–26.

    CAS  PubMed  Google Scholar 

  40. Graw J. Eye development. Curr Top Dev Biol. 2010;90:343–86.

    PubMed  Google Scholar 

  41. Rathod R, Surendran H, Battu R, Desai J, Pal R. Induced pluripotent stem cells (iPSC)-derived retinal cells in disease modeling and regenerative medicine. J Chem Neuroanat. 2019;95:81–8.

    PubMed  Google Scholar 

  42. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science. 2008;322(5903):945–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol. 2008;26(11):1269–75.

    CAS  PubMed  Google Scholar 

  44. Malik N, Rao MS. A review of the methods for human iPSC derivation. Methods Mol Biol. 2013;997:23–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Dang W, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med. 2018;10(435):eaao4097.

    PubMed  Google Scholar 

  46. da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH, Ahmado A, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018;36(4):328–37.

    PubMed  Google Scholar 

  47. Yue F, Johkura K, Shirasawa S, Yokoyama T, Inoue Y, Tomotsune D, et al. Differentiation of primate ES cells into retinal cells induced by ES cell-derived pigmented cells. Biochem Biophys Res Commun. 2010;394(4):877–83.

    CAS  PubMed  Google Scholar 

  48. Buchholz DE, Pennington BO, Croze RH, Hinman CR, Coffey PJ, Clegg DO. Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented epithelium. Stem Cells Transl Med. 2013;2(5):384–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, et al. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells. 2009;27(10):2427–34.

    CAS  PubMed  Google Scholar 

  50. Iwasaki Y, Sugita S, Mandai M, Yonemura S, Onishi A, Ito S, et al. Differentiation/purification protocol for retinal pigment epithelium from mouse induced pluripotent stem cells as a research tool. PLoS One. 2016;11(7):e0158282.

    PubMed  PubMed Central  Google Scholar 

  51. Muñiz A, Ramesh KR, Greene WA, Choi JH, Wang HC. Deriving retinal pigment epithelium (RPE) from induced pluripotent stem (iPS) cells by different sizes of embryoid bodies. J Vis Exp. 2015;(96):52262.

    Google Scholar 

  52. Leach LL, Croze RH, Hu Q, Nadar VP, Clevenger TN, Pennington BO, et al. Induced pluripotent stem cell-derived retinal pigmented epithelium: a comparative study between cell lines and differentiation methods. J Ocul Pharmacol Ther. 2016;32(5):317–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zahabi A, Shahbazi E, Ahmadieh H, Hassani SN, Totonchi M, Taei A, et al. A new efficient protocol for directed differentiation of retinal pigmented epithelial cells from normal and retinal disease induced pluripotent stem cells. Stem Cells Dev. 2012;21(12):2262–72.

    CAS  PubMed  Google Scholar 

  54. Brown NL, Patel S, Brzezinski J, Glaser T. Math5 is required for retinal ganglion cell and optic nerve formation. Development. 2001;128(13):2497–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Schneider ML, Turner DL, Vetter ML. Notch signaling can inhibit Xath5 function in the neural plate and developing retina. Mol Cell Neurosci. 2001;18(5):458–72.

    CAS  PubMed  Google Scholar 

  56. Pan L, Deng M, Xie X, Gan L. ISL1 and BRN3B co-regulate the differentiation of murine retinal ganglion cells. Development. 2008;135(11):1981–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Parameswaran S, Dravid SM, Teotia P, Krishnamoorthy RR, Qiu F, Toris C, et al. Continuous non-cell autonomous reprogramming to generate retinal ganglion cells for glaucomatous neuropathy. Stem Cells. 2015;33(6):1743–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Venugopalan P, Wang Y, Nguyen T, Huang A, Muller KJ, Goldberg JL. Transplanted neurons integrate into adult retinas and respond to light. Nat Commun. 2016;7:10472.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Teotia P, Chopra DA, Dravid SM, Van Hook MJ, Qiu F, Morrison J, et al. Generation of functional human retinal ganglion cells with target specificity from pluripotent stem cells by chemically defined recapitulation of developmental mechanism. Stem Cells. 2017;35(3):572–85.

    CAS  PubMed  Google Scholar 

  60. Trakhtenberg EF, Li Y, Feng Q, Tso J, Rosenberg PA, Goldberg JL, et al. Zinc chelation and Klf9 knockdown cooperatively promote axon regeneration after optic nerve injury. Exp Neurol. 2018;300:22–9.

    CAS  PubMed  Google Scholar 

  61. Benowitz LI, He Z, Goldberg JL. Reaching the brain: advances in optic nerve regeneration. Exp Neurol. 2017;287(Pt 3):365–73.

    PubMed  Google Scholar 

  62. Stern JH, Tian Y, Funderburgh J, Pellegrini G, Zhang K, Goldberg JL, et al. Regenerating eye tissues to preserve and restore vision. Cell Stem Cell. 2018;23(3):453.

    CAS  PubMed  Google Scholar 

  63. Stern JH, Tian Y, Funderburgh J, Pellegrini G, Zhang K, Goldberg JL, et al. Regenerating eye tissues to preserve and restore vision. Cell Stem Cell. 2018;22(6):834–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Miltner AM, La Torre A. Retinal ganglion cell replacement: current status and challenges ahead. Dev Dyn. 2019;248(1):118–28.

    PubMed  Google Scholar 

  65. Dhande OS, Huberman AD. Retinal ganglion cell maps in the brain: implications for visual processing. Curr Opin Neurobiol. 2014;24(1):133–42.

    CAS  PubMed  Google Scholar 

  66. Lu B, Malcuit C, Wang S, Girman S, Francis P, Lemieux L, et al. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells. 2009;27(9):2126–35.

    CAS  PubMed  Google Scholar 

  67. Li Y, Tsai YT, Hsu CW, Erol D, Yang J, Wu WH, et al. Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Mol Med. 2012;18:1312–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Shirai H, Mandai M, Matsushita K, Kuwahara A, Yonemura S, Nakano T, et al. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc Natl Acad Sci U S A. 2016;113(1):E81–90.

    CAS  PubMed  Google Scholar 

  69. Assawachananont J, Mandai M, Okamoto S, Yamada C, Eiraku M, Yonemura S, et al. Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Rep. 2014;2(5):662–74.

    Google Scholar 

  70. Seiler MJ, Aramant RB, Seeliger MW, Bragadottir R, Mahoney M, Narfstrom K. Functional and structural assessment of retinal sheet allograft transplantation in feline hereditary retinal degeneration. Vet Ophthalmol. 2009;12(3):158–69.

    PubMed  Google Scholar 

  71. Zarbin M. Cell-based therapy for retinal disease: the new frontier. Methods Mol Biol. 2019;1834:367–81.

    CAS  PubMed  Google Scholar 

  72. Hynes SR, Lavik EB. A tissue-engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space. Graefes Arch Clin Exp Ophthalmol. 2010;248(6):763–78.

    PubMed  Google Scholar 

  73. Thomson HA, Treharne AJ, Walker P, Grossel MC, Lotery AJ. Optimisation of polymer scaffolds for retinal pigment epithelium (RPE) cell transplantation. Br J Ophthalmol. 2011;95(4):563–8.

    PubMed  Google Scholar 

  74. Langer R. Biomaterials in drug delivery and tissue engineering: one laboratory's experience. Acc Chem Res. 2000;33(2):94–101.

    CAS  PubMed  Google Scholar 

  75. Radtke ND, Aramant RB, Seiler MJ, Petry HM, Pidwell D. Vision change after sheet transplant of fetal retina with retinal pigment epithelium to a patient with retinitis pigmentosa. Arch Ophthalmol. 2004;122(8):1159–65.

    PubMed  Google Scholar 

  76. Seras-Franzoso J, Díez-Gil C, Vazquez E, García-Fruitós E, Cubarsi R, Ratera I, et al. Bioadhesiveness and efficient mechanotransduction stimuli synergistically provided by bacterial inclusion bodies as scaffolds for tissue engineering. Nanomedicine (Lond). 2012;7(1):79–93.

    CAS  Google Scholar 

  77. Jain NK, Gupta U. Application of dendrimer-drug complexation in the enhancement of drug solubility and bioavailability. Expert Opin Drug Metab Toxicol. 2008;4(8):1035–52.

    CAS  PubMed  Google Scholar 

  78. Jain A, Bansal R. Applications of regenerative medicine in organ transplantation. J Pharm Bioallied Sci. 2015;7(3):188–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen H, Fan X, Xia J, Chen P, Zhou X, Huang J, et al. Electrospun chitosan-graft-poly (ɛ-caprolactone)/poly (ɛ-caprolactone) nanofibrous scaffolds for retinal tissue engineering. Int J Nanomedicine. 2011;6:453–61.

    PubMed  PubMed Central  Google Scholar 

  80. Binder S, Krebs I, Hilgers RD, Abri A, Stolba U, Assadoulina A, et al. Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: a prospective trial. Invest Ophthalmol Vis Sci. 2004;45(11):4151–60.

    PubMed  Google Scholar 

  81. Binder S, Stolba U, Krebs I, Kellner L, Jahn C, Feichtinger H, et al. Transplantation of autologous retinal pigment epithelium in eyes with foveal neovascularization resulting from age-related macular degeneration: a pilot study. Am J Ophthalmol. 2002;133(2):215–25.

    PubMed  Google Scholar 

  82. Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells. 2006;8(3):189–99.

    CAS  PubMed  Google Scholar 

  83. Vugler A, Carr AJ, Lawrence J, Chen LL, Burrell K, Wright A, et al. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol. 2008;214(2):347–61.

    CAS  PubMed  Google Scholar 

  84. Abedin Zadeh M, Khoder M, Al-Kinani AA, Younes HM, Alany RG. Retinal cell regeneration using tissue engineered polymeric scaffolds. Drug Discov Today. 2019;24(8):1669–78.

    CAS  PubMed  Google Scholar 

  85. Takahashi H, Okano T. Thermally-triggered fabrication of cell sheets for tissue engineering and regenerative medicine. Adv Drug Deliv Rev. 2019;138:276–92.

    CAS  PubMed  Google Scholar 

  86. Kubota A, Nishida K, Yamato M, Yang J, Kikuchi A, Okano T, et al. Transplantable retinal pigment epithelial cell sheets for tissue engineering. Biomaterials. 2006;27(19):3639–44.

    CAS  PubMed  Google Scholar 

  87. Kong B, Mi S. Electrospun Scaffolds for corneal tissue engineering: a review. Materials (Basel). 2016;9(8):614.

    Google Scholar 

  88. Xu Y, Guan J. Biomaterial property-controlled stem cell fates for cardiac regeneration. Bioact Mater. 2016;1(1):18–28.

    PubMed  PubMed Central  Google Scholar 

  89. Lu T, Li Y, Chen T. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomedicine. 2013;8:337–50.

    PubMed  PubMed Central  Google Scholar 

  90. Luo H, Cha R, Li J, Hao W, Zhang Y, Zhou F. Advances in tissue engineering of nanocellulose-based scaffolds: a review. Carbohydr Polym. 2019;224:115144.

    CAS  PubMed  Google Scholar 

  91. Trese M, Regatieri C, Yong M. Advances in retinal tissue engineering. Materials (Basel). 2012;5(1):108–120. Published online 2012 Jan 5. https://doi.org/10.3390/ma5010108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Regatieri, C.V., Vieira, A., Nehemy, M.B. (2021). Stem Cell Therapy for Ophthalmic Vascular Disease. In: Navarro, T.P., Minchillo Lopes, L.L.N., Dardik, A. (eds) Stem Cell Therapy for Vascular Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-56954-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56954-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56953-2

  • Online ISBN: 978-3-030-56954-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics