Skip to main content

Human Helminth Infections: A Primer

  • Chapter
  • First Online:
Nutrition and Infectious Diseases

Part of the book series: Nutrition and Health ((NH))

Abstract

Parasitism is the commonest lifestyle of animals. Parasitic helminths in the phyla Nematoda and Platyhelminthes have co-evolved with humans at least since we began to live in sufficiently large groups. Once essentially ubiquitous in human populations, parasitic helminths now are found almost entirely in resource-limited regions of the tropics, where sanitation and health infrastructure are inadequate to prevent their transmission. Between one and two billion people remain infected with at least one of these pathogens. Helminth infections are chronic and, although now rarely acutely lethal, have impacts on child development and growth, reflected in cognitive and physical impairment. Overt pathology is most notable in those who bear large numbers of parasites and are frequently re-infected, but detrimental effects are likely to be present even in less severely infected individuals. Control campaigns, now mostly based on mass drug administration, have made impressive gains in many areas and for some parasites, but much remains to be done. The complex milieu of helminth parasites, malnutrition, and co-infection with other pathogens underlies the cycle of poverty. Elimination and eventual eradication of these parasites will help to break this cycle and must be sustained and augmented by economic development for improved sanitation and healthcare delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABZ:

Albendazole

DEC:

Diethylcarbamazine

GI:

Gastrointestinal tract

IVM:

Ivermectin

L:

Larval stage

LF:

Lymphatic filariasis

MBZ:

Mebendazole

MDA:

Mass drug administration

MF:

Microfilariae

NTD:

Neglected tropical disease

PZQ:

Praziquantel

STH:

Soil-transmitted helminths

References

  1. World Health Organization Neglected Tropical Diseases. https://www.who.int/neglected_diseases/diseases/en/. Accessed 12 Aug 2019.

  2. Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, Jacobson J. Helminth infections: the great neglected tropical diseases. J Clin Invest. 2008;118:1311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mitra AK, Mawson AR. Neglected tropical diseases: epidemiology and global burden. Trop Med Infect Dis. 2017;2:36.

    Article  PubMed Central  Google Scholar 

  4. Jourdan PM, Lamberton PHL, Fenwick A, Addiss SG. Soil-transmitted helminth infections. Lancet. 2018;391:252–65.

    Article  PubMed  Google Scholar 

  5. Hall A, Hewitt G, Tuffrey V, de Silva N. A review and meta-analysis of the impact of intestinal worms on child growth and nutrition. Mat Child Nutr. 2008;4:118–236.

    Article  Google Scholar 

  6. Taylor MJ, Hoerauf A, Bockarie M. Lymphatic filariasis and onchocerciasis. Lancet. 2010;376:1175–85.

    Article  PubMed  Google Scholar 

  7. Colley DG, Bustinduy AL, Secor WE, King CH. Human schistosomiasis. Lancet. 2014;383:2253–64.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Keiser J, Utzinger J. Food-borne trematodiases. Clin Microbiol Rev. 2009;22:466–83.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brunetti E, White AC Jr. Cestode infections: hydatid disease and cysticercosis. Inf Dis Clinics N Am. 2012;26:421–35.

    Article  Google Scholar 

  10. Webb C, Cabada MM. Intestinal cestodes. Curr Opin Infect Dis. 2017;30:504–10.

    Article  PubMed  Google Scholar 

  11. McSorley HJ, Maizels RM. Helminth infections and host immune regulation. Clin Microbiol Rev. 2012;25:585–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anderson RM, May RM. Infectious diseases of humans. Dynamics and control. Oxford: Oxford University Press; 1991.

    Google Scholar 

  13. Gross SJ, Ryan WG, Ploeger HW. Anthelmintic treatment of dairy cows and its effect on milk production. Vet Rec. 1999;144:581–7.

    Article  CAS  PubMed  Google Scholar 

  14. Forbes AB, Huckle CA, Gibb MJ, Rook AJ, Nuthall R. Evaluation of the effects of nematode parasitism on grazing behaviour, herbage intake and growth in young grazing cattle. Vet Parasitol. 2000;90:111–8.

    Article  CAS  PubMed  Google Scholar 

  15. Miller CM, Waghorn TS, Leathwick DM, Candy PM, Oliver A-MB, Watson TG. The production costs of anthelmintic resistance in lambs. Vet Parasitol. 2012;186:376–81.

    Article  CAS  PubMed  Google Scholar 

  16. World Health Organization. Soil-transmitted helminthiases: eliminating soil-transmitted helminthiases as a public health problem in children: progress report 2001–2010 and strategic plan 2011–2020. Geneva: WHO; 2012.

    Google Scholar 

  17. Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors. 2014;7:37.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Global Burden of Disease 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence and years lived with disability for 354 diseases and injuries for 195 countries and territories. 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018;392:1789–858.

    Article  Google Scholar 

  19. Schär F, Trostdorf U, Giardina F, Khieu V, Muth S, Marti H, et al. Strongyloides stercoralis: global distribution and risk factors. PLoS Negl Trop Dis. 2013;7:e2288.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bisoffi Z, Buofrate D, Montresor A, Requena-Méndez A, Muñoz J, Krolewiecki AJ, et al. Strongyloides stercoralis: a plea for action. PLoS Negl Trop Dis. 2013;7:e2214.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Scott ME, Koski KG. Soil-transmitted helminths – does nutrition make a difference? In: Humphries DL, Scott ME, Vermund SH, editors. Nutrition and infectious diseases – shifting the clinical paradigm. Switzerland: Springer Nature; 2020.

    Google Scholar 

  22. Leles D, Gardner SL, Reinhard K, Iñiguez A, Araujo A. Are Ascaris lumbricoides and Ascaris suum a single species? Parasit Vectors. 2012;5:42.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Anderson TJ. The dangers of using single locus markers in parasite epidemiology: Ascaris as a case study. Trends Parasitol. 2001;17:183–8.

    Article  CAS  PubMed  Google Scholar 

  24. Izurieta R, Reina-Ortiz M, Ochoa-Capello, T. Trichuris trichiura. In: JB Rose, B Jiménez-Cisneros (eds) Global Water Pathogen Project. http://www.waterpathogens.org (Robertson, L (ed) Part 4 Helminths). Michigan State University, East Lansing, MI, UNESCO 2018. http://www.waterpathogens.org/book/trichuris-trichiura.

  25. Bartsch SM, Hotez PJ, Asti L, Zapf KM, Bottazzi ME, Diemert DJ, et al. The global economic and health burden of human hookworm infection. PLoS Negl Trop Dis. 2016;10:e0004922.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ottesen EA. Immune responsiveness and the pathogenesis of human onchocerciasis. J Infect Dis. 1995;171:659–71.

    Article  CAS  PubMed  Google Scholar 

  27. Babu S, Nutman TB. Immunopathogenesis of lymphatic filarial disease. Semin Immunopathol. 2012;34:847–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stephenson LS, Latham MC, Ottesen EA. Malnutrition and parasitic helminth infections. Parasitology. 2000;121(Suppl):S23–38.

    Article  PubMed  Google Scholar 

  29. Glendinning L, Nausch N, Free A, Taylor DW, Mutapi F. The microbiota and helminths: sharing the same niche in the human host. Parasitology. 2014;141:1255–71.

    Article  PubMed  Google Scholar 

  30. Jenkins TP, Rathnayaka Y, Perera PK, Peachey LE, Nolan MJ, Krause L, et al. Infections by human gastrointestinal helminths are associated with changes in faecal microbiota diversity and composition. PLoS One. 207(12):e0184719.

    Google Scholar 

  31. Rosa BA, Supali T, Gankpala L, Djuardi Y, Sartono E, Zhou Y, et al. Differential human gut microbiome assemblages during soil-transmitted helminth infections in Indonesia and Libya. Microbiome. 2018;6:33.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schneeberger PHH, Coulibaly JT, Panic G, Daubenberger C, Gueuning M, Frey JE, et al. Investigations on the interplay between Schistosoma mansoni, praziquantel and the gut microbiome. Parasit Vectors. 2018;11:168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Easton AV, Quiñones M, Vukkovic-Cvijin I, Oliveira RG, Kepha S, Odiere MR, et al. The impact of anthelmintic treatment on human gut microbiota based on cross-sectional and pre- and postdeworming comparisons in western Kenya. MBio. 2019;10:e–00519-19.

    Article  Google Scholar 

  34. Varyani F, Fleming O, Maizels RM. Helminths in the gastrointestinal tract as modulators of immunity and pathology. Am J Gastrointest Liver Physiol. 2017;312:G537–49.

    Article  Google Scholar 

  35. Majid MH, Kang SJ, Hotez PJ. Resolving “worm wars”: an extended comparison review of findings from key economics and epidemiological studies. PLoS Negl Trop Dis. 2019;13:e0006940.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Webster JP, Molyneux DH, Hotez PJ, Fenwick A. The contribution of mass drug administration to global health: past, present and future. Phil Trans Roy Soc B. 2014;369:20130434.

    Article  Google Scholar 

  37. Andrade G, Bertsch DJ, Gazzinelli A, King CH. Decline in infection-related morbidities following drug-mediated reductions in the intensity of Schistosoma infection: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2017;11:e0005372.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Marocco C, Bangert M, Joseph SA, Fitzpatrick C, Montresor A. 2017. Preventative chemotherapy in one year reduces by over 80% the number of individuals with soil-transmitted helminthiases causing morbidity: results from meta-analysis. Trans Roy Soc Trop Med Hyg. 2017;111:12–7.

    PubMed  Google Scholar 

  39. Lo NC, Addiss DG, Hotez PJ, King CH, Stothard JR, Evans DS, et al. A call to strengthen the global strategy for schistosomiasis and soil-transmitted helminthiasis: the time is now. Lancet Infect Dis. 2017;17:e64–9.

    Article  PubMed  Google Scholar 

  40. Solomons NW. Pathways to the impairment of human nutritional status by gastrointestinal pathogens. Parasitology. 1993;107(Suppl):S19–35.

    Article  PubMed  Google Scholar 

  41. Crompton DWT, Nesheim MC. Nutritional impact of intestinal helminthiasis during the human life cycle. Ann Rev Nutr. 2002;22:35–59.

    Article  CAS  Google Scholar 

  42. Robertson RC, Manges AR, Finlay BB, Prendergast AJ. The human microbiome and child growth – first 1000 days and beyond. Trends Microbiol. 2018;27:131–47.

    Article  PubMed  CAS  Google Scholar 

  43. McManus DP, Dunne DW, Sacko M, Utzinger J, Vennervald BJ, Zhou X-N. Schistosomiasis. Nature Rev Dis Primer. 2018;4:13.

    Article  Google Scholar 

  44. Colley DG, Andros TS, Campbell CH Jr. Schistosomiasis is more prevalent than previously thought: what does it mean for public health goals, policies, strategies, guidelines and intervention programs? Infect Dis Poverty. 2017;6:63.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Burke ML, Jones MK, Gobert GN, Li YS, Ellis MK, McManus DP. Immunopathogenesis of human schistosomiasis. Parasite Immunol. 2009;31:163–76.

    Article  CAS  PubMed  Google Scholar 

  46. Nash TE, Mahanty S, Garcia HH. Neurocysticercosis – more than a neglected disease. PLoS Negl Trop Dis. 2013;7:e1964.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nyberg W, Grasbeck R, Saarni M, von Bonsdorff B. Serum vitamin B12 levels and incidence of tapeworm anemia in a population heavily infected with Diphyllobothrium latum. Am J Clin Nutr. 1961;9:606–12.

    Article  CAS  PubMed  Google Scholar 

  48. Thompson DP, Geary TG. Helminth surfaces: structural, molecular and functional properties. In: Marr JJ, Komuniecki R, editors. Molecular medical parasitology. Oxford: Academic Press; 2003. p. 297–338.

    Chapter  Google Scholar 

  49. MacKenzie NE, VandeWaa EA, Gooley PR, Williams JF, Bennett JL, Bjorge SM, et al. Comparison of glycolysis and glutaminolysis in Onchocerca volvulus and Brugia pahangi by 13C NMR spectroscopy. Parasitology. 1989;99:427–35.

    Article  CAS  PubMed  Google Scholar 

  50. Storey DM. Filariasis: nutritional interactions in human and animal hosts. Parasitology. 1993;107:S147–58.

    Article  PubMed  Google Scholar 

  51. Geary TG, Moreno Y. Macrocyclic lactone anthelmintics: spectrum of activity and mechanism of action. Curr Pharmaceut Biotechnol. 2012;13:866–72.

    Article  CAS  Google Scholar 

  52. Saz HJ. Energy metabolism of parasitic helminths. Annu Rev Physiol. 1981;43:323–41.

    Article  CAS  PubMed  Google Scholar 

  53. Fleming MW, Fetterer RH. Ascaris suum: continuous perfusion of the pseudocoelom and nutrient absorption. Exp Parasitol. 1984;57:142–8.

    Article  CAS  PubMed  Google Scholar 

  54. Halton DW. Nutritional adaptations to parasitism. Int J Parasitol. 1997;27:693–704.

    Article  CAS  PubMed  Google Scholar 

  55. Tilney LG, Connelly PS, Guild GM, Vranich KA, Artis D. Adaptation of a nematode parasite to living with the mammalian epithelium. J Exp Zool A Comp Exp Biol. 2005;303:927–45.

    Article  PubMed  Google Scholar 

  56. Hansen TVA, Hansen M, Nejsum P, Mejer H, Denwood M, Thamsborg SM. Glucose absorption by the bacillary band of Trichuris muris. PLoS Negl Trop Dis. 2016;10:e0004971.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hüttemann M, Schmahl G, Mehlhorn H. Light and electron microscopic studies on two nematodes, Angiostrongylus cantonensis and Trichuris muris, differing in their mode of nutrition. Parasitol Res. 2007;101:S225–32.

    Article  PubMed  Google Scholar 

  58. Warren LG. Biochemistry of the dog hookworm. III. Oxidative phosphorylation. Exp Parasitol. 1970;27:417–23.

    Article  CAS  PubMed  Google Scholar 

  59. Skelly PJ, Da’dara AA, Li X-H, Castro-Borges W, Wilson RA. Schistosome feeding and regurgitation. PLoS Pathog. 2014;10:e1004246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. You H, Stephenson RJ, Gobert GN, McManus DP. Revisiting glucose uptake and metabolism in schistosomes: new molecular insights for improved schistosomiasis therapies. Front Genetics. 2014;5:1.

    Article  CAS  Google Scholar 

  61. Hayunga EG. Morphological adaptations of intestinal helminths. J Parasitol. 1991;77:865–73.

    Article  CAS  PubMed  Google Scholar 

  62. Pappas PW, Read CP. Membrane transport in helminth parasites-a review. Exp Parasitol. 1975;33:469–530.

    Article  Google Scholar 

  63. Insler GD. Population and developmental changes in thymidine uptake kinetics of Hymenolepis diminuta (Cestoda: Cyclophyllidea). Comp Biochem Physiol. 1981;70B:697–702.

    CAS  Google Scholar 

  64. Nyberg W. Diphyllobothrium latum and human nutrition, with particular reference to vitamin B12 deficiency. Proc Nutr Soc. 1963;22:8–14.

    Article  CAS  PubMed  Google Scholar 

  65. Platzer EG, Roberts LS. Developmental physiology of cestodes. V. Effects of vitamin deficient diets and host coprophagy prevention on development of Hymenolepis diminuta. J Parasitol. 1969;55:1143–52.

    Article  CAS  PubMed  Google Scholar 

  66. Koski KG, Scott ME. Gastrointestinal nematodes, nutrition and immunity: breaking the negative spiral. Ann Rev Nutr. 2001;21:297–321.

    Article  CAS  Google Scholar 

  67. Marques DVB, Felizardo AA, Souza RLM, Pereira AAC, Gonçalves RV, Novaes RD. Could diet composition modulate pathological outcomes in schistosomiasis mansoni? A systematic review of in vivo preclinical evidence. Parasitology. 2018;145:1127–36.

    Article  CAS  PubMed  Google Scholar 

  68. Neves RH, Machado-Silva JR, Pelajo-Machado M, Oliveira SA, Coutinho EM, Lenzi HL, et al. Morphological aspects of Schistosoma mansoni adult worms isolated from nourished and undernourished mice: a comparative analysis by confocal laser scanning microscopy. Memòrias Instituto Oswaldo Cruz. 2001;96:1013–6.

    Article  CAS  Google Scholar 

  69. Okumura-Noji K, Sasai K, Zhan R, Kawaguchi H, Maruyama H, Tada T, et al. Cholesteryl ester transfer protein deficiency causes slow egg embryonation of Schistosoma japonicum. Biochem Biophys Res Comm. 2001;286:305–10.

    Article  CAS  PubMed  Google Scholar 

  70. Oliveira SA, Barbosa AA Jr, Gomes DC, Machado-Silva JR, Barros AF, Neves RH, et al. Morphometric study of Schistosoma mansoni adult worms recovered from undernourished infected mice. Memòrias Instituto Oswaldo Cruz. 2003;98:623–7.

    Article  Google Scholar 

  71. Morales-Suarez-Varela M, Peraita-Costa I, Llopis-Morales A, Llopis-Gonzalez A. Supplementation with micronutrients and schistosomiasis: systematic review and meta-analysis. Pathogens Glob Health. 2019;113:101–8.

    Article  Google Scholar 

  72. Papier K, Williams GM, Luceres-Catubig R, Ahmed F, Olveda RM, McManus DP, et al. Childhood malnutrition and parasitic helminth interactions. Clin Infect Dis. 2014;59:234–43.

    Article  CAS  PubMed  Google Scholar 

  73. Sokolow SH, Wood CL, Jones IJ, Swartz SJ, Lopez M, Hsieh MH, et al. Global assessment of schistosomiasis control over the past century shows targeting the snail intermediate host works best. PLoS Negl Trop Dis. 2016;10:e0004794.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cupp EW, Sauerbrey M, Richards F. Elimination of human onchocerciasis: history of progress and current feasibility using ivermectin (Mectizan®) monotherapy. Acta Trop. 2011;120(Suppl. 1):S100–8.

    Article  CAS  PubMed  Google Scholar 

  75. World Health Organization. NTD donation program. 2016. https://www.who.int/neglected_diseases/Medicine_Donation_June_2016.pdf. Accessed 10 Oct 2019.

  76. Cohen JP, Silva L, Cohen A, Awatin J, Sturgeon R. Progress report on neglected tropical disease drug donation programs. Clin Therapeut. 2016;38:1193–204.

    Article  Google Scholar 

  77. World Health Organization. Preventive chemotherapy in human helminthiasis: coordinated use of anthelminthic drugs in control interventions: a manual for health professionals and programme managers. Geneva: World Health Organization; 2006.

    Google Scholar 

  78. Alhassan A, Li Z, Poole CB, Carlow CKS. Expanding the MDx toolbox for filarial diagnosis and surveillance. Trends Parasitol. 2015;31:391–400.

    Article  PubMed  Google Scholar 

  79. World Health Organization. Accelerating work to overcome the global impact of neglected tropical diseases—a roadmap for implementation. Geneva: World Health Organization; 2012.

    Google Scholar 

  80. World Health Organization. Crossing the billion: lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminthiases and trachoma: preventative chemotherapy for neglected tropical diseases. Geneva: WHO; 2017.

    Google Scholar 

  81. Campbell WC. Ivermectin as an antiparasitic agent for use in humans. Ann Rev Microbiol. 1991;45:445–74.

    Article  CAS  Google Scholar 

  82. Boatin BA, Richards FO. Control of onchocerciasis. Adv Parasitol. 2006;61:349–94.

    Article  PubMed  Google Scholar 

  83. Lawrence J, Sodahlon YK, Ogoussan KT, Hopkins AD. Growth, challenges and solutions over 25 years of Mectizan and the impact on onchocerciasis control. PLoS Negl Trop Dis. 2015;9:e0003507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Sauerbrey M, Rakers LJ, Richards FO. Progress toward elimination of onchocerciasis in the Americas. Int J Health. 2018;10(suppl 1):i71–8.

    Article  Google Scholar 

  85. World Health Organization. Progress report on the elimination of human onchocerciasis, 2017-2018. Weekly Epidemiol Rec. 2018;93:633–48.

    Google Scholar 

  86. Opoku NO, Bakajika DK, Kanza EM, Howard H, Mambandu GL, Nyathirombo A, et al. Single dose moxidectin versus ivermectin for Onchocerca volvulus infection in Ghana, Liberia, and the Democratic Republic of the Congo: a randomised, controlled, double-blind phase 3 trial. Lancet. 2018;392:1207–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Boussinesq M, Fobi G, Kuesel AC. Alternative treatment strategies to accelerate the elimination of onchocerciasis. Int Health. 2018;10:i40–8.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gyapong JO, Owusu IO, da Costa Vroom FB, Mensah EO, Gyapong M. Elimination of lymphatic filariasis: current perspectives on mass drug administration. Res Rep Trop Med. 2018;9:25–33.

    PubMed  PubMed Central  Google Scholar 

  89. Ramaiah KD, Ottesen EA. Progress and impact of 13 years of the global Programme to eliminate lymphatic Filariasis on reducing the burden of filarial disease. PLoS Negl Trop Dis. 2014;8:e3319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. World Health Organization. Global programme to eliminate lymphatic filariasis: progress report, 2017. Weekly Epidemiol Rec. 2018;93:589–604.

    Google Scholar 

  91. King CH, Suamani J, Sanuku N, Cheng YC, Satofan S, Mancuso B, et al. A trial of a triple-drug treatment for lymphatic filariasis. N Engl J Med. 2018;379:1801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. World Health Organization. WHO guideline: alternative mass drug administration regimens to eliminate lymphatic filariasis. Geneva: World Health Organization; 2017.

    Google Scholar 

  93. Herrick JA, Legrand F, Gounoue R, Nchinda G, Montavon C, Bopda J, et al. Posttreatment reactions after single-dose diethylcarbamazine or ivermectin in subjects with Loa loa infection. Clin Infect Dis. 2017;64:1017–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hoerauf A. Filariasis: new drugs and new opportunities for lymphatic filariasis and onchocerciasis. Curr Opin Infect Dis. 2008;21:673–81.

    Article  CAS  PubMed  Google Scholar 

  95. Bakowski MA, McNamara CW. Advances in antiwolbachial drug discovery for treatment of parasitic filarial worm infections. Trop Med Infect Dis. 2018;4:E108.

    Article  Google Scholar 

  96. Becker SL, Liwanag HJ, Snyder JS, Akogun O, Belizario V Jr, Freeman MC, et al. Toward the 2020 goal of soil-transmitted helminthiasis control and elimination. PLoS Negl Trop Dis. 2018;12:e0006606.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Farrell SH, Coffeng LE, Truscott JE, Werkman M, Toor J, de Vlas SJ, et al. Investigating the effectiveness of current and modified World Health Organization guidelines for the control of soil-transmitted helminth infections. Clin Infect Dis. 2018;66(S4):S253–9.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Schulz JD, Moser W, Hürlimann E, Keiser J. Preventative chemotherapy in the fight against soil-transmitted helminthiasis: achievements and limitations. Trends Parasitol. 2018;34:590–602.

    Article  CAS  PubMed  Google Scholar 

  99. Freeman MC, Akogun O, Belizario Jr. V, Broker SJ, Gyorkos TW, Imtiaz R, et al. Challenges and opportunities for control and elimination of soil-transmitted helminth infection beyond 2020. PLoS Negl Trop Dis 2019;13:e0007201.

    Google Scholar 

  100. World Health Organization. Schistosomiasis and soil-transmitted helminthiases: number of people treated in 2016. Weekly Epid Record. 2017;92:749–60.

    Google Scholar 

  101. World Health Organization. NTD elimination roadmap. https://www.who.int/neglected_diseases/news/NTD-Roadmap-targets-2021-2030.pdf. Accessed 1 Aug 2019.

  102. Chai J-Y. Praziquantel treatment in trematode and cestode infections: an update. Inf Chemotherapy. 2013;45:32–43.

    Article  CAS  Google Scholar 

  103. LoVerde PT. Schistosomiasis. Adv Exp Biol Med. 2019;1154:45–70.

    Article  Google Scholar 

  104. Toor J, Alsallaq R, Truscott J, Turner HC, Werkman M, Gurarie D, et al. Are we on our way to achieving the 2020 goals for schistosomiasis morbidity control using current WHO guidelines? Clin Infect Dis. 2018;66(S4):S245–2.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Mutapi F, Maizels R, Fenwick A, Woolhouse M. Human schistosomiasis in the post mass drug administration era. Lancet Infect Dis. 2017;17:e42–8.

    Article  PubMed  Google Scholar 

  106. Sikasunge CS, Johansen MV, Willingham ALIII, Leifsson PS, Phiri IK. Taenia solium porcine cysticercosis: viability of cysticerci and persistency of antibodies and cysticercal antigens after treatment with oxfendazole. Vet Parasitol. 2008;158:57–66.

    Article  CAS  PubMed  Google Scholar 

  107. Lightowlers MW. Control of Taenia solium taeniasis/cysticercosis: past practices and new possibilities. Parasitology. 2013;140:1566–77.

    Article  CAS  PubMed  Google Scholar 

  108. Lightowlers MW, Donadeu M. Designing a minimal intervention strategy to control Taenia solium. Trends Parasitol. 2017;33:426–34.

    Article  PubMed  Google Scholar 

  109. Blum AJ, Hotez PJ. Global “worming”: climate change and its projected its projected general impact on human helminth infections. PLoS Negl Trop Dis. 2018;12:e0006370.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Rocklov J, et al. Climate change pathways and potential future risks to nutrition and infection. In: Humphries DL, Scott ME, Vermund SH, editors. Nutrition and infectious diseases: shifting the clinical paradigm. Switzerland: Springer Nature; 2020.

    Google Scholar 

  111. Jenkins TP, Rathnayaka Y, Perera PK, Peachey LE, Nolan MJ, Krause L, et al. Infections by human gastrointestinal helminths are associated with changes in faecal microbiota diversity and composition. PLoS One. 2017;12:e0184719.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Reynolds LA, Smith KA, Filbey KJ, Harcus Y, Hewitson JP, Redpath SA, et al. Commensal-pathogen interactions in the intestinal tract: lactobacilli promote infection with, and are promoted by, helminth parasites. Gut Microbes. 2014;5:522–32.

    Article  PubMed  Google Scholar 

  113. Zaiss MM, Rapin A, Lebon L, Dubey LK, Mosconi I, Sarter K, et al. The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. Immunity. 2015;43:998–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Reynolds LA, Redpath SA, Yurist-Doutsch S, Gill N, Brown EM, van der Heijden J, et al. Enteric helminths promote Salmonella coinfection by altering the intestinal metabolome. J Infect Dis. 2017;215:1245–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Greenwood BM. Autoimmune disease and parasitic infections in Nigerians. Lancet. 1968;2(7564):380–2.

    Article  CAS  PubMed  Google Scholar 

  116. Cooper PJ. Interactions between helminth parasites and allergy. Curr Opin Allergy Clin Immunol. 2009;9:29–37.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Fleming JO, Weinstock JV. Clinical trials of helminth therapy in autoimmune diseases: rationale and findings. Parasite Immunol. 2015;37:277–92.

    Article  CAS  PubMed  Google Scholar 

  118. Stiemsma L, Reynolds L, Turvey S, Finlay B. The hygiene hypothesis: current perspectives and future therapies. ImmunoTargets Therapy. 2015;4:143–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy G. Geary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Geary, T.G., Haque, M. (2021). Human Helminth Infections: A Primer. In: Humphries, D.L., Scott, M.E., Vermund, S.H. (eds) Nutrition and Infectious Diseases . Nutrition and Health. Humana, Cham. https://doi.org/10.1007/978-3-030-56913-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56913-6_7

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-56912-9

  • Online ISBN: 978-3-030-56913-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics