Skip to main content

Bacterial Infections and Nutrition: A Primer

  • Chapter
  • First Online:
Nutrition and Infectious Diseases

Part of the book series: Nutrition and Health ((NH))

Abstract

Bacteria are the predominant organisms in the human microbiome. They can be beneficial to the host, or they can cause focal and invasive diseases and clinical infections. The chapter explores the broad diversity of bacteria and ways in which they interact with the host. It considers the influence of host nutritional status and specific nutrients on colonization, invasion, severity, and mortality of bacterial infections. Overnutrition and metabolic diseases also affect risks of bacterial diseases, but are not a focus of this chapter. The effects of undernutrition on responses to vaccines against bacterial pathogens and the effects of antimicrobials on growth are addressed. Most examples are taken from malnutrition in children as, globally, they bear the greatest burden both of undernutrition and serious morbidity from bacterial infections and of disruptions in the commensal bacterial populations in the gastrointestinal tract that affect normal child growth and development. Where clinical trials are discussed, the main focus is on whether the trials demonstrate differences in bacterial disease incidence or mortality in response to nutrient interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMR:

Antimicrobial resistance

ATP:

Adenosine triphosphate

BCG:

Bacillus Calmette-Guérin vaccine

EED:

Environmental enteric dysfunction

HIV:

Human immunodeficiency virus

ICU:

Intensive care unit

Ig:

Immunoglobulin

IGF:

Insulin-like growth factor

IL:

Interleukin

LPS:

Lipopolysaccharide

NET:

Neutrophil extracellular trap

NK:

Natural killer

RA:

Retinoic acid

RUTF:

Ready-to-use therapeutic food

SCFA:

Small intestinal bacterial overgrowth

SIBO:

Short-chain fatty acids

TB:

Tuberculosis

Th:

T helper

TLR:

Toll-like receptor

VDR:

Vitamin D receptor

References

  1. Bourke CD, Berkley JA, Prendergast AJ. Immune dysfunction as a cause and consequence of malnutrition. Trends Immunol. 2016;37(6):386–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Report to the Secretary-General of the United Nations. No time to wait: securing the future from drug-resistant infections. 2019. Available from: https://www.who.int/antimicrobial-resistance/interagency-coordination-group/IACG_final_report_EN.pdf.

  3. Aiken AM, Mturi N, Njuguna P, Mohammed S, Berkley JA, Mwangi I, et al. Risk and causes of paediatric hospital-acquired bacteraemia in Kilifi District Hospital, Kenya: a prospective cohort study. Lancet. 2011;378(9808):2021–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Robertson RC, Manges AR, Finlay BB, Prendergast AJ. The human microbiome and child growth—first 1000 days and beyond. Trends Microbiol. 2019;27(2):131–47.

    Article  CAS  PubMed  Google Scholar 

  5. Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature. 2017;548(7665):43–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mohajeri MH, Brummer RJM, Rastall RA, Weersma RK, Harmsen HJM, Faas M, et al. The role of the microbiome for human health: from basic science to clinical applications. Eur J Nutr. 2018;57(Suppl 1):1–14.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rath S, Rud T, Karch A, Pieper DH, Vital M. Pathogenic functions of host microbiota. Microbiome. 2018;6(1):174.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M, Alam MA, et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature. 2014;510(7505):417–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science. 2013;339(6119):548–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gehrig JL, Venkatesh S, Chang HW, Hibberd MC, Kung VL, Cheng J, et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science. 2019;365(6449):eaau4732.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zimmermann MB, Chassard C, Rohner F, N'Goran EK, Nindjin C, Dostal A, et al. The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in Cote d'Ivoire. Am J Clin Nutr. 2010;92(6):1406–15.

    Article  CAS  PubMed  Google Scholar 

  13. Paganini D, Uyoga MA, Kortman GAM, Cercamondi CI, Moretti D, Barth-Jaeggi T, et al. Prebiotic galacto-oligosaccharides mitigate the adverse effects of iron fortification on the gut microbiome: a randomised controlled study in Kenyan infants. Gut. 2017;66(11):1956–67.

    Article  CAS  PubMed  Google Scholar 

  14. Prentice AM, Mendoza YA, Pereira D, Cerami C, Wegmuller R, Constable A, et al. Dietary strategies for improving iron status: balancing safety and efficacy. Nutr Rev. 2017;75(1):49–60.

    Article  PubMed  Google Scholar 

  15. Kelly P, Menzies I, Crane R, Zulu I, Nickols C, Feakins R, et al. Responses of small intestinal architecture and function over time to environmental factors in a tropical population. Am J Trop Med Hyg. 2004;70(4):412–9.

    Article  PubMed  Google Scholar 

  16. Lunn PG, Northrop-Clewes CA, Downes RM. Intestinal permeability, mucosal injury, and growth faltering in Gambian infants. Lancet. 1991;338(8772):907–10.

    Article  CAS  PubMed  Google Scholar 

  17. Campbell DI, Elia M, Lunn PG. Growth faltering in rural Gambian infants is associated with impaired small intestinal barrier function, leading to endotoxemia and systemic inflammation. J Nutr. 2003;133(5):1332–8.

    Article  CAS  PubMed  Google Scholar 

  18. Campbell DI, McPhail G, Lunn PG, Elia M, Jeffries DJ. Intestinal inflammation measured by fecal neopterin in Gambian children with enteropathy: association with growth failure, Giardia lamblia, and intestinal permeability. J Pediatr Gastroenterol Nutr. 2004;39(2):153–7.

    Article  PubMed  Google Scholar 

  19. Richard SA, McCormick BJJ, Murray-Kolb LE, Lee GO, Seidman JC, Mahfuz M, et al. Enteric dysfunction and other factors associated with attained size at 5 years: MAL-ED birth cohort study findings. Am J Clin Nutr. 2019;110(1):131–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Menzies IS, Zuckerman MJ, Nukajam WS, Somasundaram SG, Murphy B, Jenkins AP, et al. Geography of intestinal permeability and absorption. Gut. 1999;44(4):483–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sullivan PB, Thomas JE, Wight DG, Neale G, Eastham EJ, Corrah T, et al. Helicobacter pylori in Gambian children with chronic diarrhoea and malnutrition. Arch Dis Child. 1990;65(2):189–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dale A, Thomas JE, Darboe MK, Coward WA, Harding M, Weaver LT. Helicobacter pylori infection, gastric acid secretion, and infant growth. J Pediatr Gastroenterol Nutr. 1998;26(4):393–7.

    Article  CAS  PubMed  Google Scholar 

  23. Thomas JE, Dale A, Bunn JE, Harding M, Coward WA, Cole TJ, et al. Early Helicobacter pylori colonisation: the association with growth faltering in The Gambia. Arch Dis Child. 2004;89(12):1149–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rogawski ET, Liu J, Platts-Mills JA, Kabir F, Lertsethtakarn P, Siguas M, et al. Use of quantitative molecular diagnostic methods to investigate the effect of enteropathogen infections on linear growth in children in low-resource settings: longitudinal analysis of results from the MAL-ED cohort study. Lancet Glob Health. 2018;6(12):e1319–e28.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Louis-Auguste J, Kelly P. Tropical enteropathies. Curr Gastroenterol Rep. 2017;19(7):29.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Attia S, Versloot CJ, Voskuijl W, van Vliet SJ, Di Giovanni V, Zhang L, et al. Mortality in children with complicated severe acute malnutrition is related to intestinal and systemic inflammation: an observational cohort study. Am J Clin Nutr. 2016;104(5):1441–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bourke CD, Jones KDJ, Prendergast AJ. Current understanding of innate immune cell dysfunction in childhood undernutrition. Front Immunol. 2019;10:1728. https://doi.org/10.3389/fimmu.2019.01728. eCollection 2019. PMID: 31417545. PMID: 31417545.

  28. Bartelt LA, Bolick DT, Guerrant RL. Disentangling microbial mediators of malnutrition: modeling environmental enteric dysfunction. Cell Mol Gastroenterol Hepatol. 2019;7(3):692–707.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Boelsen LK, Dunne EM, Mika M, Eggers S, Nguyen CD, Ratu FT, et al. The association between pneumococcal vaccination, ethnicity, and the nasopharyngeal microbiota of children in Fiji. Microbiome. 2019;7(1):106.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Seale AC, Koech AC, Sheppard AE, Barsosio HC, Langat J, Anyango E, et al. Maternal colonization with Streptococcus agalactiae and associated stillbirth and neonatal disease in coastal Kenya. Nat Microbiol. 2016;1(7):16067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bittaye M, Cash P, Forbes K. Proteomic variation and diversity in clinical Streptococcus pneumoniae isolates from invasive and non-invasive sites. PLoS ONE. 2017;12(6):e0179075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Bosch AA, Biesbroek G, Trzcinski K, Sanders EA, Bogaert D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog. 2013;9(1):e1003057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Morpeth SC, Munywoki P, Hammitt LL, Bett A, Bottomley C, Onyango CO, et al. Impact of viral upper respiratory tract infection on the concentration of nasopharyngeal pneumococcal carriage among Kenyan children. Sci Rep. 2018;8(1):11030.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Verhagen LM, Gomez-Castellano K, Snelders E, Rivera-Olivero I, Pocaterra L, Melchers WJ, et al. Respiratory infections in Enepa Amerindians are related to malnutrition and Streptococcus pneumoniae carriage. J Infect. 2013;67(4):273–81.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gebre T, Tadesse M, Aragaw D, Feye D, Beyene HB, Seyoum D, et al. Nasopharyngeal carriage and antimicrobial susceptibility patterns of Streptococcus pneumoniae among children under five in Southwest Ethiopia. Children. 2017;4(4):27.

    Article  PubMed Central  Google Scholar 

  36. Zaman K, Baqui AH, Yunus M, Sack RB, Bateman OM, Chowdhury HR, et al. Association between nutritional status, cell-mediated immune status and acute lower respiratory infections in Bangladeshi children. Eur J Clin Nutr. 1996;50(5):309–14.

    CAS  PubMed  Google Scholar 

  37. Zaman K, Baqui AH, Yunus M, Sack RB, Chowdhury HR, Black RE. Malnutrition, cell-mediated immune deficiency and acute upper respiratory infections in rural Bangladeshi children. Acta Paediatr. 1997;86(9):923–7.

    Article  CAS  PubMed  Google Scholar 

  38. Lindtjorn B, Alemu T, Bjorvatn B. Nutritional status and risk of infection among Ethiopian children. J Trop Pediatr. 1993;39(2):76–82.

    Article  CAS  PubMed  Google Scholar 

  39. Caulfield LE, de Onis M, Blossner M, Black RE. Undernutrition as an underlying cause of child deaths associated with diarrhea, pneumonia, malaria, and measles. Am J Clin Nutr. 2004;80(1):193–8.

    Article  CAS  PubMed  Google Scholar 

  40. Pickering H, Hayes RJ, Tomkins AM, Carson D, Dunn DT. Alternative measures of diarrhoeal morbidity and their association with social and environmental factors in urban children in The Gambia. Trans R Soc Trop Med Hyg. 1987;81(5):853–9.

    Article  CAS  PubMed  Google Scholar 

  41. Waterlow JC, Tomkins AM, Grantham-McGregor SM. Protein energy malnutrition. London: Edward Arnold; 1992.

    Google Scholar 

  42. Hughes WT, Price RA, Sisko F, Havron WS, Kafatos AG, Schonland M, et al. Protein-calorie malnutrition. A host determinant for Pneumocystis carinii infection. Am J Dis Child. 1974;128(1):44–52.

    Article  CAS  PubMed  Google Scholar 

  43. Russian DA, Levine SJ. Pneumocystis carinii pneumonia in patients without HIV infection. Am J Med Sci. 2001;321(1):56–65.

    Article  CAS  PubMed  Google Scholar 

  44. Tomashefski JF Jr, Butler T, Islam M. Histopathology and etiology of childhood pneumonia: an autopsy study of 93 patients in Bangladesh. Pathology. 1989;21(2):71–8.

    Article  PubMed  Google Scholar 

  45. Purtilo DT, Connor DH. Fatal infections in protein-calorie malnourished children with thymolymphatic atrophy. Arch Dis Child. 1975;50(2):149–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Walson JL, Berkley JA. The impact of malnutrition on childhood infections. Curr Opin Infect Dis. 2018;31(3):231–6.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tickell KD, Pavlinac PB, John-Stewart GC, Denno DM, Richardson BA, Naulikha JM, et al. Impact of childhood nutritional status on pathogen prevalence and severity of acute diarrhea. Am J Trop Med Hyg. 2017;97(5):1337–44.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rytter MJ, Kolte L, Briend A, Friis H, Christensen VB. The immune system in children with malnutrition—a systematic review. PLoS ONE. 2014;9(8):e105017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ibrahim MK, Zambruni M, Melby CL, Melby PC. Impact of childhood malnutrition on host defense and infection. Clin Microbiol Rev. 2017;30(4):919–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stephensen CB. Primer on immune response and interface with malnutrition. In: Humphries DL, Scott ME, Vermund SH, editors. Nutrition and infectious disease: shifting the clinical paradigm. Totowa: Humana Press; 2020.

    Google Scholar 

  51. Heilskov S, Vestergaard C, Babirekere E, Ritz C, Namusoke H, Rytter M, et al. Characterization and scoring of skin changes in severe acute malnutrition in children between 6 months and 5 years of age. J Eur Acad Dermatol Venereol. 2015;29(12):2463–9.

    Article  CAS  PubMed  Google Scholar 

  52. Gilman RH, Partanen R, Brown KH, Spira WM, Khanam S, Greenberg B, et al. Decreased gastric acid secretion and bacterial colonization of the stomach in severely malnourished Bangladeshi children. Gastroenterology. 1988;94(6):1308–14.

    Article  CAS  PubMed  Google Scholar 

  53. Martinsen TC, Bergh K, Waldum HL. Gastric juice: a barrier against infectious diseases. Basic Clin Pharmacol Toxicol. 2005;96(2):94–102.

    Article  CAS  PubMed  Google Scholar 

  54. Chandra RK, Wadhwa M. Nutritional modulation of intestinal mucosal immunity. Immunol Investig. 1989;18(1–4):119–26.

    Article  CAS  Google Scholar 

  55. Sirisinha S, Suskind R, Edelman R, Asvapaka C, Olson RE. Secretory and serum IgA in children with protein-calorie malnutrition. Pediatrics. 1975;55(2):166–70.

    Article  CAS  PubMed  Google Scholar 

  56. Reddy V, Raghuramulu N, Bhaskaram C. Secretory IgA in protein-calorie malnutrition. Arch Dis Child. 1976;51(11):871–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Youssef M, Al Shurman A, Chachaty E, Bsoul AR, Andremont A. Use of molecular typing to investigate bacterial translocation from the intestinal tract in malnourished children with Gram-negative bacteremia. Clin Microbiol Infect. 1998;4(2):70–4.

    Article  CAS  PubMed  Google Scholar 

  58. Ngari MM, Mwalekwa L, Timbwa M, Hamid F, Ali R, Iversen PO, et al. Changes in susceptibility to life-threatening infections after treatment for complicated severe malnutrition in Kenya. Am J Clin Nutr. 2018;107(4):626–34.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Njunge JM, Gwela A, Kibinge NK, Ngari M, Nyamako L, Nyatichi E, et al. Biomarkers of post-discharge mortality among children with complicated severe acute malnutrition. Sci Rep. 2019;9(1):5981.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Ortiz R, Campos C, Gomez JL, Espinoza M, Ramos-Motilla M, Betancourt M. Effect of renutrition on the proliferation kinetics of PHA stimulated lymphocytes from malnourished children. Mutat Res. 1995;334(2):235–41.

    Article  CAS  PubMed  Google Scholar 

  61. Hughes S, Kelly P. Interactions of malnutrition and immune impairment, with specific reference to immunity against parasites. Parasite Immunol. 2006;28(11):577–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gotch FM, Spry CJ, Mowat AG, Beeson PB, Maclennan IC. Reversible granulocyte killing defect in anorexia nervosa. Clin Exp Immunol. 1975;21(2):244–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Jose DG, Shelton M, Tauro GP, Belbin R, Hosking CS. Deficiency of immunological and phagocytic function in aboriginal children with protein-calorie malnutrition. Med J Aust. 1975;2(18):699–705.

    Article  CAS  PubMed  Google Scholar 

  64. Abe M, Akbar F, Matsuura B, Horiike N, Onji M. Defective antigen-presenting capacity of murine dendritic cells during starvation. Nutrition. 2003;19(3):265–9.

    Article  CAS  PubMed  Google Scholar 

  65. Hughes SM, Amadi B, Mwiya M, Nkamba H, Tomkins A, Goldblatt D. Dendritic cell anergy results from endotoxemia in severe malnutrition. J Immunol. 2009;183(4):2818–26.

    Article  CAS  PubMed  Google Scholar 

  66. Rytter MJ, Namusoke H, Ritz C, Michaelsen KF, Briend A, Friis H, et al. Correlates of thymus size and changes during treatment of children with severe acute malnutrition: a cohort study. BMC Pediatr. 2017;17(1):70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Chevalier P, Sevilla R, Sejas E, Zalles L, Belmonte G, Parent G. Immune recovery of malnourished children takes longer than nutritional recovery: implications for treatment and discharge. J Trop Pediatr. 1998;44(5):304–7.

    Article  CAS  PubMed  Google Scholar 

  68. Parent G, Chevalier P, Zalles L, Sevilla R, Bustos M, Dhenin JM, et al. In vitro lymphocyte-differentiating effects of thymulin (Zn-FTS) on lymphocyte subpopulations of severely malnourished children. Am J Clin Nutr. 1994;60(2):274–8.

    Article  CAS  PubMed  Google Scholar 

  69. Smythe PM, Brereton-Stiles GG, Grace HJ, Mafoyane A, Schonland M, Coovadia HM, et al. Thymolymphatic deficiency and depression of cell-mediated immunity in protein-calorie malnutrition. Lancet. 1971;2(7731):939–43.

    Article  CAS  PubMed  Google Scholar 

  70. Najera O, Gonzalez C, Toledo G, Lopez L, Ortiz R. Flow cytometry study of lymphocyte subsets in malnourished and well-nourished children with bacterial infections. Clin Diagn Lab Immunol. 2004;11(3):577–80.

    PubMed  PubMed Central  Google Scholar 

  71. Hughes SM, Amadi B, Mwiya M, Nkamba H, Mulundu G, Tomkins A, et al. CD4 counts decline despite nutritional recovery in HIV-infected Zambian children with severe malnutrition. Pediatrics. 2009;123(2):e347–51.

    Article  PubMed  Google Scholar 

  72. Najera O, Gonzalez C, Toledo G, Lopez L, Cortes E, Betancourt M, et al. CD45RA and CD45RO isoforms in infected malnourished and infected well-nourished children. Clin Exp Immunol. 2001;126(3):461–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Allende LM, Corell A, Manzanares J, Madruga D, Marcos A, Madrono A, et al. Immunodeficiency associated with anorexia nervosa is secondary and improves after refeeding. Immunology. 1998;94(4):543–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fakhir S, Ahmad P, Faridi MA, Rattan A. Cell-mediated immune responses in malnourished host. J Trop Pediatr. 1989;35(4):175–8.

    Article  CAS  PubMed  Google Scholar 

  75. Rodriguez L, Graniel J, Ortiz R. Effect of leptin on activation and cytokine synthesis in peripheral blood lymphocytes of malnourished infected children. Clin Exp Immunol. 2007;148:478–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Imdad A, Mayo-Wilson E, Herzer K, Bhutta ZA. Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. Cochrane Database Syst Rev. 2017;3:CD008524.

    PubMed  Google Scholar 

  77. Barffour MA, Humphries DL. Core principles: infectious disease risk in relation to macro and micronutrient status. In: Humphries DL, Scott ME, Vermund SH, editors. Nutrition and infectious disease: shifting the clinical paradigm. Totowa: Humana Press; 2020.

    Google Scholar 

  78. Villamor E, Fawzi WW. Effects of vitamin a supplementation on immune responses and correlation with clinical outcomes. Clin Microbiol Rev. 2005;18(3):446–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Oliveira LM, Teixeira FME, Sato MN. Impact of retinoic acid on immune cells and inflammatory diseases. Mediat Inflamm. 2018;2018:3067126.

    Article  CAS  Google Scholar 

  80. Wanke C, Baum M. [To be determined]. In: Humphries DL, Scott ME, Vermund SH, editors. Nutrition and infectious disease: shifting the clinical paradigm. New York: Springer; 2020.

    Google Scholar 

  81. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311(5768):1770–3.

    Article  CAS  PubMed  Google Scholar 

  82. Gombart AF. The vitamin D-antimicrobial peptide pathway and its role in protection against infection. Future Microbiol. 2009;4(9):1151–65.

    Article  CAS  PubMed  Google Scholar 

  83. Wu HX, Xiong XF, Zhu M, Wei J, Zhuo KQ, Cheng DY. Effects of vitamin D supplementation on the outcomes of patients with pulmonary tuberculosis: a systematic review and meta-analysis. BMC Pulm Med. 2018;18(1):108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Yakoob MY, Salam RA, Khan FR, Bhutta ZA. Vitamin D supplementation for preventing infections in children under five years of age. Cochrane Database Syst Rev. 2016;11:CD008824.

    PubMed  Google Scholar 

  85. Gammoh NZ, Rink L. Zinc in infection and inflammation. Nutrients. 2017;9(6):624.

    Article  PubMed Central  CAS  Google Scholar 

  86. Lassi ZS, Moin A, Bhutta ZA. Zinc supplementation for the prevention of pneumonia in children aged 2 months to 59 months. Cochrane Database Syst Rev. 2016;12:CD005978.

    PubMed  Google Scholar 

  87. Alker W, Haase H. Zinc and Sepsis. Nutrients. 2018;10(8):976.

    Article  PubMed Central  CAS  Google Scholar 

  88. Golonka R, Yeoh BS, Vijay-Kumar M. The iron tug-of-war between bacterial siderophores and innate immunity. J Innate Immun. 2019;11(3):249–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Parrow NL, Fleming RE, Minnick MF. Sequestration and scavenging of iron in infection. Infect Immun. 2013;81(10):3503–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Holden VI, Breen P, Houle S, Dozois CM, Bachman MA. Klebsiella pneumoniae Siderophores induce inflammation, bacterial dissemination, and HIF-1alpha stabilization during pneumonia. MBio. 2016;7(5):e01397–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Larson LM, Kubes JN, Ramirez-Luzuriaga MJ, Khishen S, A HS, Prado EL. Effects of increased hemoglobin on child growth, development, and disease: a systematic review and meta-analysis. Ann N Y Acad Sci. 2019;1450:83–104.

    PubMed  Google Scholar 

  92. Kim HH, Bei AK. Nutritional frameworks in malaria. In: Humphries DL, Scott ME, Vermund SH, editors. Nutrition and infectious disease: shifting the clinical paradigm. Totowa: Humana Press; 2020.

    Google Scholar 

  93. Cohen C, von Mollendorf C, de Gouveia L, Lengana S, Meiring S, Quan V, et al. Effectiveness of the 13-valent pneumococcal conjugate vaccine against invasive pneumococcal disease in South African children: a case-control study. Lancet Glob Health. 2017;5(3):e359–e69.

    Article  PubMed  Google Scholar 

  94. Moore SE, Goldblatt D, Bates CJ, Prentice AM. Impact of nutritional status on antibody responses to different vaccines in undernourished Gambian children. Acta Paediatr. 2003;92(2):170–6.

    Article  CAS  PubMed  Google Scholar 

  95. Prendergast AJ. Malnutrition and vaccination in developing countries. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370(1671):20140141.

    Article  Google Scholar 

  96. Savy M, Edmond K, Fine PE, Hall A, Hennig BJ, Moore SE, et al. Landscape analysis of interactions between nutrition and vaccine responses in children. J Nutr. 2009;139(11):2154S–218S.

    Article  CAS  PubMed  Google Scholar 

  97. Adetifa IM, Muhammad AK, Jeffries D, Donkor S, Borgdorff MW, Corrah T, et al. A tuberculin skin test survey and the annual risk of Mycobacterium tuberculosis infection in Gambian school children. PLoS ONE. 2015;10(10):e0139354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Hoang T, Agger EM, Cassidy JP, Christensen JP, Andersen P. Protein energy malnutrition during vaccination has limited influence on vaccine efficacy but abolishes immunity if administered during Mycobacterium tuberculosis infection. Infect Immun. 2015;83(5):2118–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. van Puffelen E, Hulst JM, Vanhorebeek I, Dulfer K, Van den Berghe G, Verbruggen S, et al. Outcomes of delaying parenteral nutrition for 1 week vs initiation within 24 hours among undernourished children in pediatric intensive care: a subanalysis of the PEPaNIC randomized clinical trial. JAMA Netw Open. 2018;1(5):e182668.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Vanhorebeek I, Verbruggen S, Casaer MP, Gunst J, Wouters PJ, Hanot J, et al. Effect of early supplemental parenteral nutrition in the paediatric ICU: a preplanned observational study of post-randomisation treatments in the PEPaNIC trial. Lancet Respir Med. 2017;5(6):475–83.

    Article  PubMed  Google Scholar 

  101. Tao W, Li PS, Shen Z, Shu YS, Liu S. Effects of omega-3 fatty acid nutrition on mortality in septic patients: a meta-analysis of randomized controlled trials. BMC Anesthesiol. 2016;16(1):39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Zhang X, Yang K, Chen L, Liao X, Deng L, Chen S, et al. Vitamin A deficiency in critically ill children with sepsis. Crit Care. 2019;23(1):267.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ponnarmeni S, Kumar Angurana S, Singhi S, Bansal A, Dayal D, Kaur R, et al. Vitamin D deficiency in critically ill children with sepsis. Paediatr Int Child H. 2016;36(1):15–21.

    Article  Google Scholar 

  104. Saleh NY, Abo El Fotoh WMM. Low serum zinc level: the relationship with severe pneumonia and survival in critically ill children. Int J Clin Pract. 2018;72(6):e13211.

    Article  PubMed  CAS  Google Scholar 

  105. Tie HT, Tan Q, Luo MZ, Li Q, Yu JL, Wu QC. Zinc as an adjunct to antibiotics for the treatment of severe pneumonia in children <5 years: a meta-analysis of randomised-controlled trials. Br J Nutr. 2016;115(5):807–16.

    Article  CAS  PubMed  Google Scholar 

  106. Das RR, Singh M, Naik SS. Vitamin D as an adjunct to antibiotics for the treatment of acute childhood pneumonia. Cochrane Database Syst Rev. 2018;7:CD011597.

    PubMed  Google Scholar 

  107. Thorne-Lyman A, Fawzi WW. Vitamin A supplementation, infectious disease and child mortality: a summary of the evidence. Nestle Nutr Inst Workshop Ser. 2012;70:79–90.

    Article  CAS  PubMed  Google Scholar 

  108. Leite HP, de Lima LF. Metabolic resuscitation in sepsis: a necessary step beyond the hemodynamic? J Thorac Dis. 2016;8(7):E552–7.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Castillo-Duran C, Vial P, Uauy R. Oral copper supplementation: effect on copper and zinc balance during acute gastroenteritis in infants. Am J Clin Nutr. 1990;51(6):1088–92.

    Article  CAS  PubMed  Google Scholar 

  110. Mitra AK, Wahed MA, Chowdhury AK, Stephensen CB. Urinary retinol excretion in children with acute watery diarrhoea. J Health Popul Nutr. 2002;20(1):12–7.

    PubMed  Google Scholar 

  111. Siddiqui F, Belayneh G, Bhutta ZA. Nutrition and diarrheal disease and enteric pathogens. In: Humphries DL, Scott ME, Vermund SH, editors. Nutrition and infectious disease: shifting the clinical paradigm. Totowa: Humana Press; 2020.

    Google Scholar 

  112. Pelletier DL, Frongillo EA Jr, Habicht JP. Epidemiologic evidence for a potentiating effect of malnutrition on child mortality. Am J Public Health. 1993;83(8):1130–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Scrimshaw NS, Taylor CE, Gordon JE. Interactions of nutrition and infection. Monogr Ser World Health Organ. 1968;57:3–329.

    CAS  PubMed  Google Scholar 

  114. Bhutta ZA. Effect of infections and environmental factors on growth and nutritional status in developing countries. J Pediatr Gastroenterol Nutr. 2006;43(Suppl 3):S13–21.

    Article  PubMed  Google Scholar 

  115. Black RE. Would control of childhood infectious diseases reduce malnutrition? Acta Paediatr Scand Suppl. 1991;374:133–40.

    Article  CAS  PubMed  Google Scholar 

  116. Manary MJ, Broadhead RL, Yarasheski KE. Whole-body protein kinetics in marasmus and kwashiorkor during acute infection. Am J Clin Nutr. 1998;67(6):1205–9.

    Article  CAS  PubMed  Google Scholar 

  117. Manary MJ, Yarasheski KE, Berger R, Abrams ET, Hart CA, Broadhead RL. Whole-body leucine kinetics and the acute phase response during acute infection in marasmic Malawian children. Pediatr Res. 2004;55(6):940–6.

    Article  CAS  PubMed  Google Scholar 

  118. Tomkins AM, Garlick PJ, Schofield WN, Waterlow JC. The combined effects of infection and malnutrition on protein metabolism in children. Clin Sci (Lond). 1983;65(3):313–24.

    Article  CAS  Google Scholar 

  119. Waterlow JC, Golden J, Picou D. The measurements of rates of protein turnover, synthesis, and breakdown in man and the effects of nutritional status and surgical injury. Am J Clin Nutr. 1977;30(8):1333–9.

    Article  CAS  PubMed  Google Scholar 

  120. Benhariz M, Goulet O, Salas J, Colomb V, Ricour C. Energy cost of fever in children on total parenteral nutrition. Clin Nutr. 1997;16(5):251–5.

    Article  CAS  PubMed  Google Scholar 

  121. Du Bois EF. The basal metabolism of fever. JAMA. 1921;77:352–5.

    Article  Google Scholar 

  122. Stettler N, Schutz Y, Whitehead R, Jequier E. Effect of malaria and fever on energy metabolism in Gambian children. Pediatr Res. 1992;31(2):102–6.

    Article  CAS  PubMed  Google Scholar 

  123. Saez-Llorens X, Lagrutta F. The acute phase host reaction during bacterial infection and its clinical impact in children. Pediatr Infect Dis J. 1993;12(1):83–7.

    Article  CAS  PubMed  Google Scholar 

  124. Stephensen CB. Burden of infection on growth failure. J Nutr. 1999;129(2S Suppl):534S–8S.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Berkley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berkley, J.A. (2021). Bacterial Infections and Nutrition: A Primer. In: Humphries, D.L., Scott, M.E., Vermund, S.H. (eds) Nutrition and Infectious Diseases . Nutrition and Health. Humana, Cham. https://doi.org/10.1007/978-3-030-56913-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56913-6_4

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-56912-9

  • Online ISBN: 978-3-030-56913-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics