Skip to main content

Interactions Among Macronutrients and Their Effect on Lypolisis

  • Chapter
  • First Online:
Bioaccessibility and Digestibility of Lipids from Food

Abstract

The digestion and absorption of dietary lipids is a very complex mechanism involving insoluble substances, neutral and amphiphilic lipids, and different lipases that act in the stomach and small intestine [2]. Therefore, the intestinal absorption of the products of lipolysis (mainly free fatty acids), as well as free cholesterol and fat-soluble vitamins, enormously depends on the efficiency of the sequential action of lipolytic enzymes on the different substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez-Sala A, Garcia-Llatas G, Cilla A, Barberá R, Sánchez-Siles LM, Lagarda MJ (2016) Impact of lipid components and emulsifiers on plant sterols bioaccessibility from milk-based fruit beverages. J Agric Food Chem 64(28):5686–5691. https://doi.org/10.1021/acs.jafc.6b02028

    Article  CAS  Google Scholar 

  2. Armand M (2007) Lipases and lipolysis in the human digestive tract: where do we stand? Curr Opin Clin Nutr Metab Care 10(2):156–164. https://doi.org/10.1097/MCO.0b013e3280177687

    Article  CAS  Google Scholar 

  3. Asensio-Grau A, Calvo-Lerma J, Heredia A, Andrés A (2018) Fat digestibility in meat products: influence of food structure and gastrointestinal conditions. Int J Food Sci Nutr 0(0):1–10. https://doi.org/10.1080/09637486.2018.1542665

    Google Scholar 

  4. Asensio-Grau A, Peinado I, Heredia A, Andrés A (2018) Effect of cooking methods and intestinal conditions on lipolysis, proteolysis and xanthophylls bioaccessibility of eggs. J Funct Foods 46(May):579–586. https://doi.org/10.1016/j.jff.2018.05.025

    Article  CAS  Google Scholar 

  5. Asensio-Grau A, Frassineti S, Heredia A, Andrés A (2018) Lipid digestibility in single or combined food. In: 4th International & 5th National Student Congress of Food Science and Technology, p 2341–2240 (74). Avecta Valencia (Spain)

    Google Scholar 

  6. Borgström B, Erlanson C (1973) Pancreatic lipase and co-lipase: interactions and effects of bile salts and other detergents. Eur J Biochem 37(1):60–68

    Article  Google Scholar 

  7. Calvo-Lerma J, Fornés-Ferrer V, Heredia A, Andrés A (2018) In vitro digestion of lipids in real foods: influence of lipid organization within the food matrix and interactions with nonlipid components. J Food Sci 83(10):2629–2637. https://doi.org/10.1111/1750-3841.14343

    Article  CAS  Google Scholar 

  8. Chen L, Remondetto GE, Subirade M (2006) Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Technol 17(5):272–283. https://doi.org/10.1016/j.tifs.2005.12.011

    Article  CAS  Google Scholar 

  9. Dickinson E (2009) Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocoll 23(6):1473–1482. https://doi.org/10.1016/j.foodhyd.2008.08.005

    Article  CAS  Google Scholar 

  10. Dickinson E (2012) Emulsion gels: the structuring of soft solids with protein-stabilized oil droplets. Food Hydrocoll 28(1):224–241. https://doi.org/10.1016/j.foodhyd.2011.12.017

    Article  CAS  Google Scholar 

  11. Fang X, Rioux LE, Labrie S, Turgeon SL (2016) Disintegration and nutrients release from cheese with different textural properties during in vitro digestion. Food Res Int 88:276–283. https://doi.org/10.1016/j.foodres.2016.04.008

    Article  CAS  Google Scholar 

  12. Golding M, Wooster TJ (2010) The influence of emulsion structure and stability on lipid digestion. Curr Opin Colloid Interface Sci 15(1–2), 90–101

    Google Scholar 

  13. Golding M, Wooster TJ, Day L, Xu M, Lundin L, Keogh J, Cliftonx P (2011) Impact of gastric structuring on the lipolysis of emulsified lipids. Soft Matter 7(7):3513–3523. https://doi.org/10.1039/c0sm01227k

    Article  CAS  Google Scholar 

  14. Grundy MML, Carrière F, Mackie AR, Gray DA, Butterworth PJ, Ellis PR (2016) The role of plant cell wall encapsulation and porosity in regulating lipolysis during the digestion of almond seeds. Food Func 7(1):69–78. https://doi.org/10.1039/c5fo00758e

    Article  CAS  Google Scholar 

  15. Grundy MML, McClements DJ, Ballance S, Wilde PJ (2018) Influence of oat components on lipid digestion using an in vitro model: impact of viscosity and depletion flocculation mechanism. Food Hydrocoll 83(May):253–264. https://doi.org/10.1016/j.foodhyd.2018.05.018

    Article  CAS  Google Scholar 

  16. Guo Q, Ye A, Bellissimo N, Singh H, Rousseau D (2017) Modulating fat digestion through food structure design. Prog Lipid Res 68(October):109–118. https://doi.org/10.1016/j.plipres.2017.10.001

    Article  CAS  Google Scholar 

  17. Guzmán-Ortiz FA, San Martín-Martínez E, Valverde ME, Rodríguez-Aza Y, Berríos JDJ, Mora-Escobedo R (2017) Profile analysis and correlation across phenolic compounds, isoflavones and antioxidant capacity during germination of soybeans ( Glycine max L.). CyTA 15(4):516–524. https://doi.org/10.1080/19476337.2017.1302995

    Google Scholar 

  18. Heneen WK, Karlsson G, Brismar K, Gummeson PO, Marttila S, Leonova S et al (2008) Fusion of oil bodies in endosperm of oat grains. Planta 228(4):589–599. https://doi.org/10.1007/s00425-008-0761-x

    Article  CAS  Google Scholar 

  19. Kong F, Tang J, Lin M, Rasco B (2008) Thermal effects on chicken and salmon muscles: tenderness, cook loss, area shrinkage, collagen solubility and microstructure. LWT-Food Sci Technol 41(7):1210–1222

    Article  CAS  Google Scholar 

  20. Lairon D, Play B, Jourdheuil-Rahmani D (2007) Digestible and indigestible carbohydrates: interactions with postprandial lipid metabolism. J Nutr Biochem 18(4):217–227. https://doi.org/10.1016/j.jnutbio.2006.08.001

    Article  CAS  Google Scholar 

  21. Li Y, Hu M, McClements DJ (2011) Factors affecting lipase digestibility of emulsified lipids using an in vitro digestion model: proposal for a standardised pH-stat method. Food Chem 126(2):498–505. https://doi.org/10.1016/j.foodchem.2010.11.027

    Article  CAS  Google Scholar 

  22. Lo CM, Tso P (2009) Physicochemical basis of the digestion and absorption of triacylglycerol. In: Designing functional foods: measuring and controlling food structure breakdown and nutrient absorption. Woodhead Publishing, p 94–125. https://doi.org/10.1533/9781845696603.1.94

  23. Maldonado-Valderrama J, Wilde P, Macierzanka A, MacKie A (2011) The role of bile salts in digestion. Adv Colloid Interf Sci 165(1):36–46. https://doi.org/10.1016/j.cis.2010.12.002

    Article  CAS  Google Scholar 

  24. Michalski MC, Genot C, Gayet C, Lopez C, Fine F, Joffre F,... & steering committee of RMT LISTRAL. (2013). Multiscale structures of lipids in foods as parameters affecting fatty acid bioavailability and lipid metabolism. Prog Lipid Res 52(4), 354–373

    Google Scholar 

  25. Nakamura A, Yoshida R, Maeda H, Corredig M (2006) Soy soluble polysaccharide stabilization at oil-water interfaces. Food Hydrocoll 20(2–3 SPEC. ISS.):277–283. https://doi.org/10.1016/j.foodhyd.2005.02.018

  26. Nieva-Echevarría B, Goicoechea E, Guillén MD (2017) Effect of the presence of protein on lipolysis and lipid oxidation occurring during in vitro digestion of highly unsaturated oils. Food Chem 235:21–33. https://doi.org/10.1016/j.foodchem.2017.05.028

    Article  Google Scholar 

  27. Nieva-Echevarría B, Goicoechea E, Manzanos MJ, Guillén MD (2016) A study by 1H NMR on the influence of some factors affecting lipid in vitro digestion. Food Chem 211:17–26. https://doi.org/10.1016/j.foodchem.2016.05.021

    Article  Google Scholar 

  28. Pafumi Y, Lairon D, De La Porte PL, Juhel C, Storch J, Hamosh M, Armand M (2002) Mechanisms of inhibition of triacylglycerol hydrolysis by human gastric lipase. J Biol Chem 277(31):28070–28079. https://doi.org/10.1074/jbc.M202839200

    Article  CAS  Google Scholar 

  29. Pająk P, Socha R, Broniek J, Królikowska K, Fortuna T (2019) Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chem 275(September 2018):69–76. https://doi.org/10.1016/j.foodchem.2018.09.081

    Article  Google Scholar 

  30. Paz-Yépez C, Peinado I, Heredia A, Andrés A (2018) Influence of particle size and intestinal conditions on in vitro lipid and protein digestibility of walnuts and peanuts. Food Res Int 119(June 2018):951–959. https://doi.org/10.1016/j.foodres.2018.11.014

    PubMed  Google Scholar 

  31. Paz-Yépez C, Asensio-Grau A, Calvo-Lerma J, Heredia Gutiérrez A, Andrés A (2019) Study of lipolysis under in vitro digestion of different pasta dishes. In: 6th International Conference on Food digestion, p 378/201. Food Research International (ELSEVIER), Granada (Spain)

    Google Scholar 

  32. Qiu C, Zhao M, Decker EA, McClements DJ (2015) Influence of protein type on oxidation and digestibility of fish oil-in-water emulsions: Gliadin, caseinate, and whey protein. Food Chem 175:249–257. https://doi.org/10.1016/j.foodchem.2014.11.112

    Article  CAS  Google Scholar 

  33. Shani-Levi C, Alvito P, Andrés A, Assunção R, Barberá R, Blanquet-Diot S et al (2017) Extending in vitro digestion models to specific human populations: perspectives, practical tools and bio-relevant information. Trends Food Sci Technol 60:52–63. https://doi.org/10.1016/j.tifs.2016.10.017

    Article  CAS  Google Scholar 

  34. Singh J, Dartois A, Kaur L (2010) Starch digestibility in food matrix: a review. Trends Food Sci Technol 21(4):168–180

    Article  CAS  Google Scholar 

  35. De Smet E, Mensink RP, Plat J (2012) Effects of plant sterols and stanols on intestinal cholesterol metabolism: suggested mechanisms from past to present. Mol Nutr Food Res 56(7):1058–1072. https://doi.org/10.1002/mnfr.201100722

    Article  Google Scholar 

  36. Taylor JD, Linman MJ, Wilkop T, Cheng Q (2009) Regenerable tethered bilayer lipid membrane arrays for multiplexed label-free analysis of lipid-protein interactions on poly(dimethylsiloxane) microchips using SPR imaging. Anal Chem 81(3):1146–1153. https://doi.org/10.1021/ac8023137

    Article  CAS  Google Scholar 

  37. Torcello-Gómez A, Maldonado-Valderrama J, de Vicente J, Cabrerizo-Vílchez MA, Gálvez-Ruiz MJ, Martín-Rodríguez A (2011) Investigating the effect of surfactants on lipase interfacial behaviour in the presence of bile salts. Food Hydrocoll 25(4):809–816. https://doi.org/10.1016/j.foodhyd.2010.09.007

    Article  Google Scholar 

  38. Turgeon SL, Rioux LE (2011) Food matrix impact on macronutrients nutritional properties. Food Hydrocoll 25(8):1915–1924. https://doi.org/10.1016/j.foodhyd.2011.02.026

    Article  CAS  Google Scholar 

  39. Veverka M, Dubaj T, Veverková E, Šimon P (2018) Natural oil emulsions stabilized by β-glucan gel. Colloids Surf A Physicochem Eng Asp 537(October 2017):390–398. https://doi.org/10.1016/j.colsurfa.2017.10.043

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Andrés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heredia, A., Asensio-Grau, A., Calvo-Lerma, J., Andrés, A. (2021). Interactions Among Macronutrients and Their Effect on Lypolisis. In: Grundy, M.ML., Wilde, P.J. (eds) Bioaccessibility and Digestibility of Lipids from Food. Springer, Cham. https://doi.org/10.1007/978-3-030-56909-9_9

Download citation

Publish with us

Policies and ethics