Skip to main content

Abstract

Dairy products exhibit a vast diversity of structures due to differences in the origin of milk components and the changes induced by processing (e.g. physical, mechanical and biochemical). The structural modifications of the milk fat globules in dairy matrices affect their release during gastrointestinal digestion and subsequent absorption, and therefore promote different physiological responses (e.g. postprandial lipaemia and satiety). This chapter reviews recent data in relation to the impact of the main dairy matrices on lipid bioaccessibility and bioavailability in both in vitro and in vivo models for animals and humans. For this, dairy products were divided into different physical states: liquid (e.g. milk), semi-solid (e.g. yoghurt and soft cheeses) and solid (e.g. hard cheeses) matrices. This chapter demonstrates that the matrix effect i.e. the structure of dairy products, can have a profound impact on the kinetics of dairy fat delivery and can modulate the nutritional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CVD:

Cardiovascular disease

FA:

Fatty acid

GI:

Gastrointestinal

HDL:

High-density lipoprotein

LDL:

Low-density lipoprotein

MFGM:

Milk fat globule membrane

TAG:

Triaglycerol

UHT:

Ultra-high temperature

References

  1. Ayala-Bribiesca E, Lussier M, Chabot D, Turgeon SL, Britten M (2016) Effect of calcium enrichment of Cheddar cheese on its structure, in vitro digestion and lipid bioaccessibility. Int Dairy J 53:1–9

    Article  CAS  Google Scholar 

  2. Ayala-Bribiesca E, Turgeon SL, Britten M (2017) Effect of calcium on fatty acid bioaccessibility during in vitro digestion of Cheddar-type cheeses prepared with different milk fat fractions. J Dairy Sci 100(4):2454–2470

    Article  CAS  PubMed  Google Scholar 

  3. Ayala-Bribiesca E, Turgeon SL, Pilon G, Marette A, Britten M (2019) Reprint of "Postprandial lipaemia and fecal fat excretion in rats is affected by the calcium content and type of milk fat present in Cheddar-type cheeses". Food Res Int 118:65–71

    Article  PubMed  Google Scholar 

  4. Bendsen NT, Hother A, Jensen S, Lorenzen JK, Astrup A (2008) Effect of dairy calcium on fecal fat excretion: a randomized crossover trial. Int J Obes 32(12):1816–1824

    Article  CAS  Google Scholar 

  5. Bernbäck S, Bläckberg L, Hernell O (1989) Fatty acids generated by gastric lipase promote human milk triacylglycerol digestion by pancreatic colipase-dependent lipase. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism 1001(3):286–293

    Article  Google Scholar 

  6. Berton A, Rouvellac S, Robert B, Rousseau F, Lopez C, Crenon I (2012) Effect of the size and interface composition of milk fat globules on their in vitro digestion by the human pancreatic lipase: native versus homogenized milk fat globules. Food Hydrocoll 29(1):123–134

    Article  CAS  Google Scholar 

  7. Biong AS, Müller H, Seljeflot I, Veierød MB, Pedersen JI (2004) A comparison of the effects of cheese and butter on serum lipids, haemostatic variables and homocysteine. Br J Nutr 92(5):791–797

    Article  CAS  PubMed  Google Scholar 

  8. Clemente G, Mancini M, Nazzaro F, Lasorella G, Rivieccio A, Palumbo AM, Rivellese AA, Ferrara L, Giacco R (2003) Effects of different dairy products on postprandial lipaemia. Nutr Metab Cardiovasc Dis 13(6):377–383

    Article  CAS  PubMed  Google Scholar 

  9. de Goede J, Geleijnse JM, Ding EL, Soedamah-Muthu SS (2015) Effect of cheese consumption on blood lipids: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 73(5):259–275

    Article  PubMed  Google Scholar 

  10. Dougkas A, Minihane AM, Givens DI, Reynolds CK, Yaqoob P (2012) Differential effects of dairy snacks on appetite, but not overall energy intake. Br J Nutr 108(12):2274–2285

    Article  CAS  PubMed  Google Scholar 

  11. Drouin-Chartier J-P, Tremblay AJ, Maltais-Giguère J, Charest A, Guinot L, Rioux L-E, Labrie S, Britten M, Lamarche B, Turgeon SL (2017) Differential impact of the cheese matrix on the postprandial lipid response: a randomized, crossover, controlled trial. Am J Clin Nutr 106(6):1358–1365

    Article  CAS  PubMed  Google Scholar 

  12. Fang X, Rioux L-E, Labrie S, Turgeon SL (2016) Commercial cheeses with different texture have different disintegration and protein/peptide release rates during simulated in vitro digestion. Int Dairy J 56:169–178

    Article  CAS  Google Scholar 

  13. Fang X, Rioux L-E, Labrie S, Turgeon SL (2016) Disintegration and nutrients release from cheese with different textural properties during in vitro digestion. Food Res Int 88:276–283

    Article  CAS  Google Scholar 

  14. Feeney EL, Barron R, Dible V, Hamilton Z, Power Y, Tanner L, Flynn C, Bouchier P, Beresford T, Noronha N, Gibney ER (2018) Dairy matrix effects: response to consumption of dairy fat differs when eaten within the cheese matrix—a randomized controlled trial. Am J Clin Nutr 108(4):667–674

    Article  PubMed  Google Scholar 

  15. Fox PF, Guinee TP, Cogan TM, McSweeney PLH (2017) Cheese: structure, rheology and texture. In: Fundamentals of cheese science. Springer US, Boston, pp 475–532

    Chapter  Google Scholar 

  16. Gallier S, Cui J, Olson TD, Rutherfurd SM, Ye A, Moughan PJ, Singh H (2013) In vivo digestion of bovine milk fat globules: effect of processing and interfacial structural changes. I. Gastric digestion. Food Chem 141(3):3273–3281

    Article  CAS  PubMed  Google Scholar 

  17. Gallier S, Ye A, Singh H (2012) Structural changes of bovine milk fat globules during in vitro digestion. J Dairy Sci 95(7):3579–3592

    Article  CAS  PubMed  Google Scholar 

  18. Gallier S, Zhu XQ, Rutherfurd SM, Ye A, Moughan PJ, Singh H (2013) In vivo digestion of bovine milk fat globules: effect of processing and interfacial structural changes. II. Upper digestive tract digestion. Food Chem 141(3):3215–3223

    Article  CAS  PubMed  Google Scholar 

  19. Givens DI (2017) Saturated fats, dairy foods and health: a curious paradox? Nutr Bull 42(3):274–282

    Article  Google Scholar 

  20. Griffin B (2017) Serum low-density lipoprotein as a dietary responsive biomarker of cardiovascular disease risk: consensus and confusion. Nutr Bull 42(3):266–273

    Article  Google Scholar 

  21. Guinot L, Rioux L-E, Labrie S, Britten M, Turgeon SL (2019) Identification of texture parameters influencing commercial cheese matrix disintegration and lipid digestion using an in vitro static digestion model. Food Res Int 121:269–277

    Article  CAS  PubMed  Google Scholar 

  22. Hjerpsted J, Leedo E, Tholstrup T (2011) Cheese intake in large amounts lowers LDL-cholesterol concentrations compared with butter intake of equal fat content. Am J Clin Nutr 94(6):1479–1484

    Article  CAS  PubMed  Google Scholar 

  23. Hu M, Li Y, Decker EA, McClements DJ (2010) Role of calcium and calcium-binding agents on the lipase digestibility of emulsified lipids using an in vitro digestion model. Food Hydrocoll 24(8):719–725

    Article  CAS  Google Scholar 

  24. Kolovou G, Ooi TC (2013) Postprandial lipaemia and vascular disease. Curr Opin Cardiol 28(4):446–451

    Article  PubMed  Google Scholar 

  25. Kopf-Bolanz KA, Schwander F, Gijs M, Vergères G, Portmann R, Egger L (2012) Validation of an in vitro digestive system for studying macronutrient decomposition in humans. J Nutr 142(2):245–250

    Article  CAS  PubMed  Google Scholar 

  26. Lacroix M, Bon C, Bos C, Léonil J, Benamouzig R, Luengo C, Fauquant J, Tomé D, Gaudichon C (2008) Ultra high temperature treatment, but not pasteurization, affects the postprandial kinetics of Milk proteins in humans. J Nutr 138(12):2342–2347

    Article  CAS  PubMed  Google Scholar 

  27. Lamothe S, Corbeil M-M, Turgeon SL, Britten M (2012) Influence of cheese matrix on lipid digestion in a simulated gastro-intestinal environment. Food Funct 3(7):724–731

    Article  CAS  PubMed  Google Scholar 

  28. Lamothe S, Rémillard N, Tremblay J, Britten M (2017) Influence of dairy matrices on nutrient release in a simulated gastrointestinal environment. Food Res Int 92:138–146

    Article  CAS  PubMed  Google Scholar 

  29. Lopez C (2005) Focus on the supramolecular structure of milk fat in dairy products. Reprod Nutr Dev 45(4):497–511

    Article  CAS  PubMed  Google Scholar 

  30. Lopez C (2011) Milk fat globules enveloped by their biological membrane: unique colloidal assemblies with a specific composition and structure. Curr Opin Colloid Interface Sci 16(5):391–404

    Article  CAS  Google Scholar 

  31. Lorenzen JK, Nielsen S, Holst JJ, Tetens I, Rehfeld JF, Astrup A (2007) Effect of dairy calcium or supplementary calcium intake on postprandial fat metabolism, appetite, and subsequent energy intake. Am J Clin Nutr 85(3):678–687

    Article  CAS  PubMed  Google Scholar 

  32. Lucey J, Johnson M, Horne D (2003) Invited review: perspectives on the basis of the rheology and texture properties of cheese. J Dairy Sci 86(9):2725–2743

    Article  CAS  PubMed  Google Scholar 

  33. Lucey JA, Munro PA, Singh H (1998) Rheological properties and microstructure of acid milk gels as affected by fat content and heat treatment. J Food Sci 63(4):660–664

    Article  CAS  Google Scholar 

  34. Mackie AR, Rafiee H, Malcolm P, Salt L, van Aken G (2013) Specific food structures supress appetite through reduced gastric emptying rate. Am J Physiol Gastrointest Liver Physiol 304(11):G1038–G1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. MÃ¥nsson HL (2008) Fatty acids in bovine milk fat. Food Nutr Res 52

    Google Scholar 

  36. Fox PF (2003) Milk proteins: general and historical aspects. In Advanced Dairy Chemistry—1 Proteins (pp. 1-48). Springer, Boston, MA

    Google Scholar 

  37. Michalski M-C (2009) Specific molecular and colloidal structures of milk fat affecting lipolysis, absorption and postprandial lipaemia. Eur J Lipid Sci Technol 111(5):413–431

    Article  CAS  Google Scholar 

  38. Michalski M-C, Briard V, Desage M, Geloen A (2005) The dispersion state of milk fat influences triglyceride metabolism in the rat. Eur J Nutr 44(7):436–444

    Article  CAS  PubMed  Google Scholar 

  39. Michalski M-C, Januel C (2006) Does homogenization affect the human health properties of cow's milk? Trends Food Sci Technol 17(8):423–437

    Article  CAS  Google Scholar 

  40. Michalski M-C, Michel F, Geneste C (2002) Appearance of submicronic particles in the milk fat globule size distribution upon mechanical treatments. Lait 82(2):193–208

    Article  CAS  Google Scholar 

  41. Michalski M-C, Soares AF, Lopez C, Leconte N, Briard V, Geloen A (2006) The supramolecular structure of milk fat influences plasma triacylglycerols and fatty acid profile in the rat. Eur J Nutr 45(4):215–224

    Article  CAS  PubMed  Google Scholar 

  42. Momsen MM, Dahim M, Brockman HL (1997) Lateral packing of the pancreatic lipase cofactor, colipase, with phosphatidylcholine and substrates. Biochemistry 36(33):10073–10081

    Article  CAS  PubMed  Google Scholar 

  43. Mu H, Porsgaard T (2005) The metabolism of structured triacylglycerols. Prog Lipid Res 44(6):430–448

    Article  CAS  PubMed  Google Scholar 

  44. Mulet-Cabero A-I, Egger L, Portmann R, Ménard O, Marze S, Minekus M, Le Feunteun S, Sarkar A, Grundy MML, Carrière F, Golding M, Dupont D, Recio I, Brodkorb A, Mackie A (2020) A standardised semi-dynamic in vitro digestion method suitable for food – an international consensus. Food Funct 11(2):1702–1720

    Article  PubMed  Google Scholar 

  45. Mulet-Cabero A-I, Mackie AR, Brodkorb A, Wilde PJ (2020) Dairy structures and physiological responses: a matter of gastric digestion. Crit Rev Food Sci Nutr:1–16

    Google Scholar 

  46. Mulet-Cabero A-I, Mackie AR, Wilde PJ, Fenelon MA, Brodkorb A (2019) Structural mechanism and kinetics of in vitro gastric digestion are affected by process-induced changes in bovine milk. Food Hydrocoll 86:172–183

    Article  CAS  Google Scholar 

  47. Mulet-Cabero A-I, Rigby NM, Brodkorb A, Mackie AR (2017) Dairy food structures influence the rates of nutrient digestion through different in vitro gastric behaviour. Food Hydrocoll 67:63–73

    Article  CAS  Google Scholar 

  48. Sandoval-Castilla O, Lobato-Calleros C, Aguirre-Mandujano E, Vernon-Carter E (2004) Microstructure and texture of yogurt as influenced by fat replacers. Int Dairy J 14(2):151–159

    Article  CAS  Google Scholar 

  49. Schmidt, J. M., Kjølbæk, L., Jensen, K. J., Rouy, E., Bertram, H. C., Larsen, T., Raben, A., Astrup, A., & Hammershøj, M. (2020). Influence of type of dairy matrix micro-and macrostructure on in vitro lipid digestion. Food & Function

    Book  Google Scholar 

  50. Singh H (2004) Heat stability of milk. Int J Dairy Technol 57(2–3):111–119

    Article  CAS  Google Scholar 

  51. Sodini I, Remeuf F, Haddad S, Corrieu G (2004) The relative effect of milk base, starter, and process on yogurt texture: a review. Crit Rev Food Sci Nutr 44(2):113–137

    Article  PubMed  Google Scholar 

  52. Soerensen KV, Thorning TK, Astrup A, Kristensen M, Lorenzen JK (2014) Effect of dairy calcium from cheese and milk on fecal fat excretion, blood lipids, and appetite in young men. Am J Clin Nutr 99(5):984–991

    Article  CAS  PubMed  Google Scholar 

  53. Tholstrup T, Høy C-E, Andersen LN, Christensen RD, Sandström B (2004) Does fat in milk, butter and cheese affect blood lipids and cholesterol differently? J Am Coll Nutr 23(2):169–176

    Article  PubMed  Google Scholar 

  54. Thorning TK, Bertram HC, Bonjour J-P, De Groot L, Dupont D, Feeney E, Ipsen R, Lecerf JM, Mackie A, McKinley MC (2017) Whole dairy matrix or single nutrients in assessment of health effects: current evidence and knowledge gaps. Am J Clin Nutr 105(5):1033–1045

    Article  CAS  PubMed  Google Scholar 

  55. Tunick MH, Ren DX, Van Hekken DL, Bonnaillie L, Paul M, Kwoczak R, Tomasula PM (2016) Effect of heat and homogenization on in vitro digestion of milk. J Dairy Sci 99(6):4124–4139

    Article  CAS  PubMed  Google Scholar 

  56. Wickham M, Garrood M, Leney J, Wilson PD, Fillery-Travis A (1998) Modification of a phospholipid stabilized emulsion interface by bile salt: effect on pancreatic lipase activity. J Lipid Res 39(3):623–632

    Article  CAS  PubMed  Google Scholar 

  57. Ye A, Cui J, Dalgleish D, Singh H (2016) The formation and breakdown of structured clots from whole milk during gastric digestion. Food Funct 7(10):4259–4266

    Article  CAS  PubMed  Google Scholar 

  58. Ye A, Cui J, Singh H (2010) Effect of the fat globule membrane on in vitro digestion of milk fat globules with pancreatic lipase. Int Dairy J 20(12):822–829

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. -I. Mulet-Cabero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mulet-Cabero, A.I., Brodkorb, A. (2021). Dairy Products. In: Grundy, M.ML., Wilde, P.J. (eds) Bioaccessibility and Digestibility of Lipids from Food. Springer, Cham. https://doi.org/10.1007/978-3-030-56909-9_8

Download citation

Publish with us

Policies and ethics