Skip to main content

Lipid Digestion: In Vitro and In Vivo Models and Insights

  • Chapter
  • First Online:
Bioaccessibility and Digestibility of Lipids from Food

Abstract

Lipids are important macronutrients and micronutrients as well as carriers of bioactive lipophilic compounds. Thus, scientists have made considerable efforts to understand the digestive fate of lipids in the human gut in order to facilitate the rational design of lipid-based and lipid-containing foods and oral formulations. This chapter overviews the digestive transformations lipids are exposed to along the human gastro-intestine. Special attention is given to quantitative and qualitative in insights gained from in vitro and in vivo studies as well as discussion of prospective directions of research and development efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilde PJ, Chu BS (2011) Interfacial & colloidal aspects of lipid digestion. Adv Colloid Interf Sci 165:14–22

    Article  CAS  Google Scholar 

  2. Sarkar A, Goh KKT, Singh H (2010) Properties of oil-in-water emulsions stabilized by β-lactoglobulin in simulated gastric fluid as influenced by ionic strength and presence of mucin. Food Hydrocoll 24:534–541

    Article  CAS  Google Scholar 

  3. Carrière F (2016) Impact of gastrointestinal lipolysis on oral lipid-based formulations and bioavailability of lipophilic drugs. Biochimie 125:297–305

    Article  PubMed  CAS  Google Scholar 

  4. McClements DJ (2018) Recent developments in encapsulation and release of functional food ingredients: delivery by design. Curr Opin Food Sci 21:1–6

    Article  Google Scholar 

  5. Feher J (2017) Quantitative human physiology, pp 821–833

    Google Scholar 

  6. N’Goma J-CB, Amara S, Dridi K, Jannin V, Carrière F (2012) Understanding the lipid-digestion processes in the GI tract before designing lipid-based drug-delivery systems. Ther Deliv 3:105–124

    Article  CAS  Google Scholar 

  7. Sams L, Paume J, Giallo J, Carrière F (2016) Relevant pH and lipase for in vitro models of gastric digestion. Food Funct 7:30–45

    Article  CAS  PubMed  Google Scholar 

  8. Armand M (2007) Lipases and lipolysis in the human digestive tract: where do we stand? Curr Opin Clin Nutr Metab Care 10:156–164

    Article  CAS  PubMed  Google Scholar 

  9. Lowe ME (2000) Properties and function of pancreatic lipase related protein 2. Biochimie 82:997–1004

    Article  CAS  PubMed  Google Scholar 

  10. Hui DY (2012) Phospholipase A2 enzymes in metabolic and cardiovascular diseases. Curr Opin Lipidol 23:235–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Murakami M, Taketomi Y, Sato H, Yamamoto K (2011) Secreted phospholipase A2 revisited. J Biochem 150:233–255

    Article  CAS  PubMed  Google Scholar 

  12. Mu H, Hoy CE, Høy CE (2004) Lipid-based formulations for oral administration of poorly water-soluble drugs. Prog Lipid Res 43:105–133

    Article  CAS  PubMed  Google Scholar 

  13. Bohn T, McDougall GJ, Alegría A, Alminger M, Arrigoni E, Aura A-M, Brito C, Cilla A, El SN, Karakaya S, Martínez-Cuesta MC, Santos CN (2015) Mind the gap-deficits in our knowledge of aspects impacting the bioavailability of phytochemicals and their metabolites-a position paper focusing on carotenoids and polyphenols. Mol Nutr Food Res 59:1307–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Danneskiold-Samsøe NB, Barros HD, Santos R, Bicas JL, Cazarin CB, Madsen L, Kristiansen K, Pastore GM, Brix S, Junior MR (2019) Interplay between food and gut microbiota in health and disease. Food Res Int 115:23–31

    Article  PubMed  CAS  Google Scholar 

  15. Reis P, Holmberg K, Watzke H, Leser ME, Miller R (2009) Lipases at interfaces: a review. Adv Colloid Interf Sci 147–148:237–250

    Article  CAS  Google Scholar 

  16. Phan S, Salentinig S, Prestidge CA, Boyd BJ (2014) Self-assembled structures formed during lipid digestion: characterization and implications for oral lipid-based drug delivery systems. Drug Deliv Transl Res 4:275–294

    Article  CAS  PubMed  Google Scholar 

  17. Vingerhoeds MH, Blijdenstein TBJ, Zoet FD, van Aken GA (2005) Emulsion flocculation induced by saliva and mucin. Food Hydrocoll 19:915–922

    Article  CAS  Google Scholar 

  18. Carpenter GH (2013) The secretion, components, and properties of saliva. Annu Rev Food Sci Technol 4:267–276

    Article  CAS  PubMed  Google Scholar 

  19. Sarkar A, Goh KKT, Singh H (2009) Colloidal stability and interactions of milk-protein-stabilized emulsions in an artificial saliva. Food Hydrocoll 23:1270–1278

    Article  CAS  Google Scholar 

  20. Vingerhoeds MH, Silletti E, de Groot J, Schipper RG, van Aken GA (2009) Relating the effect of saliva-induced emulsion flocculation on rheological properties and retention on the tongue surface with sensory perception. Food Hydrocoll 23:773–785

    Article  CAS  Google Scholar 

  21. Marze S (2017) Bioavailability of nutrients and micronutrients: advances in modeling and in vitro approaches. Annu Rev Food Sci Technol 8:35–55

    Article  CAS  PubMed  Google Scholar 

  22. Van Vliet T (2010) Colloidal aspects of texture perception. Food Eng Ingredients 35:38–42

    Google Scholar 

  23. Mackie A, Macierzanka A (2010) Colloidal aspects of protein digestion. Curr Opin Colloid Interface Sci 15:102–108

    Article  CAS  Google Scholar 

  24. McClements DJ, Decker EA (2007) Controlling lipid bioavailability using emulsion-based delivery systems. In: McClements DJ (ed) Understanding and controlling the microstructure of complex foods. Woodhead Publishing Limited, New York, pp 483–500

    Chapter  Google Scholar 

  25. Vors C, Capolino P, Guérin C, Meugnier E, Pesenti S, Chauvin M-A, Monteil J, Peretti N, Cansell M, Carrière F, Michalski M-C (2012) Coupling in vitro gastrointestinal lipolysis and Caco-2 cell cultures for testing the absorption of different food emulsions. Food Funct 3:537

    Article  CAS  PubMed  Google Scholar 

  26. Chahinian H, Snabe T, Attias C, Fojan P, Petersen SB, Carrière F (2006) How gastric lipase, an interfacial enzyme with a Ser-His-Asp catalytic triad, acts optimally at acidic pH. Biochemistry 45:993–1001

    Article  CAS  PubMed  Google Scholar 

  27. Singh H, Ye A (2013) Structural and biochemical factors affecting the digestion of protein-stabilized emulsions. Curr Opin Colloid Interface Sci 18:360–370

    Article  CAS  Google Scholar 

  28. Singh H, Sarkar A (2011) Behaviour of protein-stabilised emulsions under various physiological conditions. Adv Colloid Interf Sci 165:47–57

    Article  CAS  Google Scholar 

  29. Golding M, Wooster TJ, Day L, Xu M, Lundin L, Keogh J, Clifton P, Cliftonx P (2011) Impact of gastric structuring on the lipolysis of emulsified lipids. Soft Matter 7:3513

    Article  CAS  Google Scholar 

  30. Levi CS, Goldstein N, Portmann R, Lesmes U (2017) Emulsion and protein degradation in the elderly: qualitative insights from a study coupling a dynamic in vitro digestion model with proteomic analyses. Food Hydrocoll 69:393–401

    Article  CAS  Google Scholar 

  31. Singh H, Ye AQ, Horne D (2009) Structuring food emulsions in the gastrointestinal tract to modify lipid digestion. Prog Lipid Res 48:92–100

    Article  CAS  PubMed  Google Scholar 

  32. McClements DJ, Decker EA (2009) In: Designing functional foods. Elsevier, pp 502–546

    Google Scholar 

  33. Bakala-N’Goma JC, Williams HD, Sassene PJ, Kleberg K, Calderone M, Jannin V, Igonin A, Partheil A, Marchaud D, Jule E, Vertommen J, Maio M, Blundell R, Benameur H, Müllertz A, Pouton CW, Porter CJH, Carrière F (2015) Toward the establishment of standardized in vitro tests for lipid-based formulations. 5. Lipolysis of representative formulations by gastric lipase. Pharm Res 32:1279–1287

    Article  PubMed  CAS  Google Scholar 

  34. Golding M, Wooster TJ (2010) The influence of emulsion structure and stability on lipid digestion. Curr Opin Colloid Interface Sci 15:90–101

    Article  CAS  Google Scholar 

  35. Armand M, Pasquier B, Andre M, Borel P, Senft M, Peyrot J, Salducci J, Portugal H, Jaussan V, Lairon D (1999) Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. Am J Clin Nutr 70:1096–1106

    Article  CAS  PubMed  Google Scholar 

  36. Kalantzi L, Goumas K, Kalioras V, Abrahamsson B, Dressman JB, Reppas C (2006) Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res 23:165–176

    Article  CAS  PubMed  Google Scholar 

  37. Bauer E, Jakob S, Mosenthin R (2005) Principles of physiology of lipid digestion. Asian-Australasian J Anim Sci 18:282–295

    Article  CAS  Google Scholar 

  38. Yao M, Xiao H, Mcclements DJ (2014) Delivery of lipophilic bioactives: assembly, disassembly, and reassembly of lipid nanoparticles. Annu Rev Food Sci Technol 5:53–81

    Article  PubMed  Google Scholar 

  39. Guerra A, Etienne-Mesmin L, Livrelli V, Denis S, Blanquet-Diot S, Alric M (2012) Relevance and challenges in modeling human gastric and small intestinal digestion. Trends Biotechnol 30:591–600

    Article  CAS  PubMed  Google Scholar 

  40. Payne AN, Zihler A, Chassard C, Lacroix C (2012) Advances and perspectives in in vitro human gut fermentation modeling. Trends Biotechnol 30:17–25

    Article  CAS  PubMed  Google Scholar 

  41. Marze S, Choimet M (2012) In vitro digestion of emulsions: mechanistic and experimental models. Soft Matter 8:10982–10993

    Article  CAS  Google Scholar 

  42. Hur SJ, Lim BO, Decker EA, McClements DJ (2011) In vitro human digestion models for food applications. Food Chem 125:1–12

    Article  CAS  Google Scholar 

  43. Marze S (2015) Bioaccessibility of lipophilic micro-constituents from a lipid emulsion. Food Funct 6:3218–3227

    Article  CAS  PubMed  Google Scholar 

  44. Marze S (2015) Refining in silico simulation to study digestion parameters affecting the bioaccessibility of lipophilic nutrients and micronutrients. Food Funct 6:114–123

    Article  CAS  Google Scholar 

  45. Muttakin S, Moxon TE, Gouseti O (2019) In vivo, in vitro, and in silico studies of the GI tract. In: Interdisciplinary approaches to food digestion. Springer International Publishing, Cham, pp 29–67

    Chapter  Google Scholar 

  46. Lacatusu I, Badea N, Niculae G, Bordei N, Stan R, Meghea A (2014) Lipid nanocarriers based on natural compounds: an evolving role in plant extract delivery. Eur J Lipid Sci Technol 116:1708–1717

    Article  CAS  Google Scholar 

  47. Parada J, Aguilera JM (2007) Food microstructure affects the bioavailability of several nutrients. J Food Sci 72:R21–R32

    Article  CAS  PubMed  Google Scholar 

  48. Walker R, Decker EA, McClements DJ (2015) Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: opportunities and obstacles in the food industry. Food Funct 6:41–54

    Article  CAS  Google Scholar 

  49. McClements DJ, Li Y (2010) Review of in vitro digestion models for rapid screening of emulsion-based systems. Food Funct 1:32–59

    Article  CAS  PubMed  Google Scholar 

  50. Yoo JY, Chen XD. Int J Food Eng

    Google Scholar 

  51. Li Y, Hu M, McClements DJ (2011) Factors affecting lipase digestibility of emulsified lipids using an in vitro digestion model: proposal for a standardised pH-stat method. Food Chem 126:498–505

    Article  CAS  Google Scholar 

  52. Li Y, Mcclements DJ (2010) New mathematical model for interpreting pH-stat digestion profiles: impact of lipid droplet characteristics on in vitro digestibility. J Agric Food Chem 58:8085–8092

    Article  CAS  PubMed  Google Scholar 

  53. Meshulam D, Lesmes U (2013) Responsiveness of emulsions stabilized by lactoferrin nano-particles to simulated intestinal conditions. Food Funct 5:65–73

    Article  Google Scholar 

  54. Bohn T et al (2017) Crit Rev Food Sci Nutr:1–23

    Google Scholar 

  55. Minekus M, Alminger M, Alvito P, Ballance S, Bohn TO, Bourlieu C, Carriere F, Boutrou R, Corredig M, Dupont D, Dufour C (2014) A standardised static in vitro digestion method suitable for food–an international consensus. Food Funct 5:1113

    Article  CAS  PubMed  Google Scholar 

  56. Brodkorb A, Egger L, Alminger M, Alvito P, Assunção R, Ballance S, Bohn T, Bourlieu-Lacanal C, Boutrou R, Carrière F, Clemente A (2019) INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat Protocol 14:991–1014

    Article  CAS  Google Scholar 

  57. Kim HJ, Ingber DE (2013) Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol 5:1130

    Article  CAS  Google Scholar 

  58. Hilgendorf C, Spahn-Langguth H, Regårdh CG, Lipka E, Amidon GL, Langguth P (2000) Caco‐2 versus caco‐2/HT29‐MTX co‐cultured cell lines: permeabilities via diffusion, inside‐and outside‐directed carrier‐mediated transport. J Pharm Sci 89:63–75

    Article  CAS  PubMed  Google Scholar 

  59. Tyrer P, Ruth Foxwell A, Kyd J, Harvey M, Sizer P, Cripps A (2002) Validation and quantitation of an in vitro M-cell model. Biochem Biophys Res Commun 299:377–383

    Article  CAS  PubMed  Google Scholar 

  60. Chanput W, Mes JJ, Wichers HJ (2014) THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol 23:37–45

    Article  CAS  PubMed  Google Scholar 

  61. Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H (2015) The impact of food bioactives on health: in vitro and ex vivo models. Springer Nature, Cham

    Book  Google Scholar 

  62. Luo Z, Liu Y, Zhao B, Tang M, Dong H, Zhang L, Lv B, Wei L (2013) Ex vivo and in situ approaches used to study intestinal absorption. J Pharmacol Toxicol Methods 68:208–216

    Article  CAS  PubMed  Google Scholar 

  63. Jain AS, Dhawan VV, Sarmento B, Nagarsenker MS (2016) In vitro and ex vivo evaluations of lipid anti-cancer nanoformulations: insights and assessment of bioavailability enhancement. AAPS PharmSciTech 17:553–571

    Article  CAS  PubMed  Google Scholar 

  64. Lefebvre DE, Venema K, Gombau L, Valerio LG Jr, Raju J, Bondy GS, Bouwmeester H, Paul Singh R, Clippinger AJ, Collnot E-M, Mehta R, Stone V (2015) Utility of models of the gastrointestinal tract for assessment of the digestion and absorption of engineered nanomaterials released from food matrices. Nanotoxicology 9:523–542

    Article  CAS  PubMed  Google Scholar 

  65. Kim HJ, Huh D, Hamilton G, Ingber DE (2012) Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12:2165

    Article  CAS  PubMed  Google Scholar 

  66. Minekus M, Marteau P, Havenaar R, Huisintveld JHJ (1995) Multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. ATLA 23:197–209

    Google Scholar 

  67. Bellmann S, Lelieveld J, Gorissen T, Minekus M, Havenaar R (2016) Development of an advanced in vitro model of the stomach and its evaluation versus human gastric physiology. Food Res Int 88:191–198

    Article  CAS  Google Scholar 

  68. Elashoff JD, Reedy TJ, Meyer JH (1982) Analysis of gastric emptying data. Gastroenterology 83:1306–1312

    Article  CAS  PubMed  Google Scholar 

  69. Levi CS, Lesmes U (2014) Bi-compartmental elderly or adult dynamic digestion models applied to interrogate protein digestibility. Food Funct 5:2402–2409

    Article  CAS  PubMed  Google Scholar 

  70. Ménard O, Picque D, Dupont D (2015) In: The impact of food bioactives on health. Springer International Publishing, Cham, pp 73–81

    Google Scholar 

  71. Vardakou M, Mercuri A, Barker SA, Craig DQM, Faulks RM, Wickham MSJ (2011) Achieving antral grinding forces in biorelevant in vitro models: comparing the USP dissolution apparatus II and the dynamic gastric model with human in vivo data. AAPS PharmSciTech 12:620–626

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kong FB, Singh RP (2010) A human gastric simulator (HGS) to study food digestion in human stomach. J Food Sci 75:E627–E635

    Article  CAS  PubMed  Google Scholar 

  73. Chen C, Zhang B, Fu X, You L-J, Abbasi AM, Liu RH (2016) The digestibility of mulberry fruit polysaccharides and its impact on lipolysis under simulated saliva, gastric and intestinal conditions. Food Hydrocoll 58:171–178

    Article  CAS  Google Scholar 

  74. Grundy MML, Grassby T, Mandalari G, Waldron KW, Butterworth PJ, Berry SEE, Ellis PR (2015) Effect of mastication on lipid bioaccessibility of almonds in a randomized human study and its implications for digestion kinetics, metabolizable energy, and postprandial lipemia. Am J Clin Nutr 101:25–33. https://doi.org/10.3945/ajcn.114.088328

    Article  CAS  PubMed  Google Scholar 

  75. Grassby T, Mandalari G, Grundy MML, Edwards CH, Bisignano C, Trombetta D, Smeriglio A, Chessa S, Ray S, Sanderson J, Berry SE, Ellis PR, Waldron KW (2017) In vitro and in vivo modeling of lipid bioaccessibility and digestion from almond muffins: the importance of the cell-wall barrier mechanism. J Funct Foods 37:263–271. https://doi.org/10.1016/j.jff.2017.07.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Morell P, Hernando I, Fiszman SM (2014) Understanding the relevance of in-mouth food processing. A review of in vitro techniques. Trends Food Sci Technol 35:18–31

    Article  CAS  Google Scholar 

  77. Woda A, Mishellany-Dutour A, Batier L, François O, Meunier J-P, Reynaud B, Alric M, Peyron M-A (2010) Development and validation of a mastication simulator. J Biomech 43:1667–1673

    Article  CAS  PubMed  Google Scholar 

  78. van Aken GA, Vingerhoeds MH, de Hoog EHA (2007) Food colloids under oral conditions. Curr Opin Colloid Interface Sci 12:251–262

    Article  CAS  Google Scholar 

  79. Ele Ekouna J-P, Boitel-Conti M, Lerouge P, Bardor M, Guerineau F (2017) Enhanced production of recombinant human gastric lipase in turnip hairy roots. Plant Cell Tissue Organ Cult 1:601–610

    Article  CAS  Google Scholar 

  80. Capolino P, Guérin C, Paume J, Giallo J, Ballester J-M, Cavalier J-F, Carrière F (2011) In vitro gastrointestinal lipolysis: replacement of human digestive lipases by a combination of rabbit gastric and porcine pancreatic extracts. Food Dig 2:43–51

    Article  CAS  Google Scholar 

  81. Sassene PJ, Fanø M, Mu H, Rades T, Aquistapace S, Schmitt B, Cruz-Hernandez C, Wooster TJ, Müllertz A (2016) Comparison of lipases for in vitro models of gastric digestion: lipolysis using two infant formulas as model substrates. Food Funct 7:3989–3998

    Article  CAS  PubMed  Google Scholar 

  82. Chatzidaki MD, Mateos-Diaz E, Leal-Calderon F, Xenakis A, Carrière F (2016) Water-in-oil microemulsions versus emulsions as carriers of hydroxytyrosol: an in vitro gastrointestinal lipolysis study using the pHstat technique. Food Funct 7:2258–2269

    Article  CAS  PubMed  Google Scholar 

  83. Bourlieu C, Ménard O, De La Chevasnerie A, Sams L, Rousseau F, Madec MN, Robert B, Deglaire A, Pezennec S, Bouhallab S, Carrière F, Dupont D (2015) The structure of infant formulas impacts their lipolysis, proteolysis and disintegration during in vitro gastric digestion. Food Chem 182:224–235

    Article  CAS  PubMed  Google Scholar 

  84. Giang TM, Gaucel S, Brestaz P, Anton M, Meynier A, Trelea IC, Le Feunteun S (2016) Dynamic modeling of in vitro lipid digestion: individual fatty acid release and bioaccessibility kinetics. Food Chem 194:1180–1188

    Article  CAS  PubMed  Google Scholar 

  85. Dupont D, Alric M, Blanquet-Diot S, Bornhorst G, Cueva C, Deglaire A, Denis S, Ferrua M, Havenaar R, Lelieveld J, Mackie AR, Marzorati M, Menard O, Minekus M, Miralles B, Recio I, Van den Abbeele P (2019) Can dynamic in vitro digestion systems mimic the physiological reality? Crit Rev Food Sci Nutr 59:1546–1562

    Article  CAS  PubMed  Google Scholar 

  86. Sarkar A, Ademuyiwa V, Stubley S, Esa NH, Goycoolea FM, Qin X, Gonzalez F, Olvera C (2018) Pickering emulsions co-stabilized by composite protein/polysaccharide particle-particle interfaces: impact on in vitro gastric stability. Food Hydrocoll 84:282–291

    Article  CAS  Google Scholar 

  87. Marku D, Wahlgren M, Rayner M, Sjöö M, Timgren A (2012) Characterization of starch Pickering emulsions for potential applications in topical formulations. Int J Pharm 428:1–7

    Article  CAS  PubMed  Google Scholar 

  88. Shimoni G, Shani Levi C, Levi Tal S, Lesmes U (2013) Emulsions stabilization by lactoferrin nano-particles under in vitro digestion conditions. Food Hydrocoll 33:264–272

    Article  CAS  Google Scholar 

  89. Zhang R, Zhang Z, Zhang H, Decker EA, McClements DJ (2015) Influence of emulsifier type on gastrointestinal fate of oil-in-water emulsions containing anionic dietary fiber (pectin). Food Hydrocoll 45:175–185

    Article  CAS  Google Scholar 

  90. Tzoumaki MV, Moschakis T, Scholten E, Biliaderis CG (2013) In vitro lipid digestion of chitin nanocrystal stabilized o/w emulsions. Food Funct 4:121–129

    Article  CAS  PubMed  Google Scholar 

  91. Tokle T, Lesmes U, Decker EA, McClements DJ (2012) Impact of dietary fiber coatings on behavior of protein-stabilized lipid droplets under simulated gastrointestinal conditions. Food Funct 3:58–66

    Article  CAS  PubMed  Google Scholar 

  92. de Oliveira SC, Bourlieu C, Ménard O, Bellanger A, Henry G, Rousseau F, Dirson E, Carrière F, Dupont D, Deglaire A (2016) Impact of pasteurization of human milk on preterm newborn in vitro digestion: gastrointestinal disintegration, lipolysis and proteolysis. Food Chem 211:171–179

    Article  PubMed  CAS  Google Scholar 

  93. Gallier S, Acton D, Garg M, Singh H (2017) Natural and processed milk and oil body emulsions: bioavailability, bioaccessibility and functionality. Food Struct 13:13–23

    Article  Google Scholar 

  94. Chang YG, McClements DJ (2016) Characterization of mucin–lipid droplet interactions: influence on potential fate of fish oil-in-water emulsions under simulated gastrointestinal conditions. Food Hydrocoll 56:425–433

    Article  CAS  Google Scholar 

  95. Vingerhoeds MH, de Wijk RA, van Aken GA (2011) Textural perception of liquid emulsions: role of oil content, oil viscosity and emulsion viscosity. Food Hydrocoll 25:789–796

    Article  CAS  Google Scholar 

  96. McClements DJ (2018) Enhanced delivery of lipophilic bioactives using emulsions: a review of major factors affecting vitamin, nutraceutical, and lipid bioaccessibility. Food Funct 9:22–41

    Article  CAS  PubMed  Google Scholar 

  97. Meyer JH, Elashoff JD, Lake R (1999) Gastric emptying of indigestible versus digestible oils and solid fats in normal humans. Dig Dis Sci 44:1076–1082

    Article  CAS  PubMed  Google Scholar 

  98. Moreau H, Bernadac A, Gargouri Y, Benkouka F, Laugier R, Verger R (1989) Immunocytolocalization of human gastric lipase in chief cells of the fundic mucosa. Histochemistry 91:419–423

    Article  CAS  PubMed  Google Scholar 

  99. Janssen RH, Vincken JP, Van Den Broek LAM, Fogliano V, Lakemond CMM, Agric J (2017) Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. Food Chem 65:2275–2278

    Article  CAS  Google Scholar 

  100. Lesmes U, McClements DJ (2012) Controlling lipid digestibility: response of lipid droplets coated by β-lactoglobulin-dextran Maillard conjugates to simulated gastrointestinal conditions. Food Hydrocoll 26:221–230

    Article  CAS  Google Scholar 

  101. Mun S, Decker EA, Park Y, Weiss J, McClements DJ (2006) Influence of interfacial composition on in vitro digestibility of emulsified lipids: potential mechanism for chitosan’s ability to inhibit fat digestion. Food Biophys 1:21–29

    Article  Google Scholar 

  102. Meshulam D, Slavuter J, Lesmes U (2014) Behavior of emulsions stabilized by a hydrophobically modified inulin under bio-relevant conditions of the human gastro-intestine. Food Biophys 9:416–423

    Article  Google Scholar 

  103. Chu BS, Gunning AP, Rich GT, Ridout MJ, Faulks RM, Wickham MSJ, Morris VJ, Wilde PJ (2010) Adsorption of bile salts and pancreatic colipase and lipase onto digalactosyldiacylglycerol and dipalmitoylphosphatidylcholine monolayers. Langmuir 26:9782–9793

    Article  CAS  PubMed  Google Scholar 

  104. Salentinig S, Sagalowicz L, Leser ME, Tedeschi C, Glatter O (2011) Transitions in the internal structure of lipid droplets during fat digestion. Soft Matter 7:650–661

    Article  CAS  Google Scholar 

  105. Chu BS, Rich GT, Ridout MJ, Faulks RM, Wickham MSJ, Wilde PJ (2009) Modulating pancreatic lipase activity with galactolipids: effects of emulsion interfacial composition. Langmuir 25:9352–9360

    Article  CAS  PubMed  Google Scholar 

  106. Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. https://doi.org/10.1016/j.cmet.2015.07.026

  107. Carriere F, Renou C, Lopez V, De Caro J, Ferrato F, Lengsfeld H, De Caro A, Laugier R, Verger R (2000) The specific activities of human digestive lipases measured from the in vivo and in vitro lipolysis of test meals. Gastroenterology 119:949–960

    Article  CAS  PubMed  Google Scholar 

  108. Hooijmans CR, Leenaars M, Ritskes-Hoitinga M (2010) A gold standard publication checklist to improve the quality of animal studies, to fully integrate the three Rs, and to make systematic reviews more feasible. Altern Lab Anim 38:167–182

    Article  CAS  PubMed  Google Scholar 

  109. Shani-Levi C, Alvito P, Andrés A, Assunção R, Barberá R, Blanquet-Diot S, Bourlieu C, Brodkorb A, Cilla A, Deglaire A, Denis S (2017) Extending in vitro digestion models to specific human populations: perspectives, practical tools and bio-relevant information. Trends Food Sci Technol 60:52–63

    Article  CAS  Google Scholar 

  110. Qi K, Seo T, Jiang Z, Carpentier YA, Deckelbaum RJ (2006) Triglycerides in fish oil affect the blood clearance of lipid emulsions containing long-and medium-chain triglycerides in mice. J Nutr 136:2766–2772

    Article  CAS  PubMed  Google Scholar 

  111. Hauss DJ (2007) Oral lipid-based formulations. Adv Drug Deliv Rev 59:667–676

    Article  CAS  PubMed  Google Scholar 

  112. Sciascia Q, Daş G, Metges CC (2016) The pig as a model for humans: effects of nutritional factors on intestinal function and health. J Anim Sci 94:441–452

    Article  CAS  Google Scholar 

  113. Delosière M, Santé-Lhoutellier V, Chantelauze C, Durand D, Thomas A, Joly C, Pujos-Guillot E, Rémond D, Comte B, Gladine C, Guy A, Durand T, Laurentie M, Dufour C (2016) Quantification of 4-hydroxy-2-nonenal-protein adducts in the in vivo gastric digesta of mini-pigs using a GC-MS/MS method with accuracy profile validation. Food Funct 7:3497–3504

    Article  PubMed  CAS  Google Scholar 

  114. Goncharova K, Pierzynowski SG, Grujic D, Kirko S, Szwiec K, Wang J, Kovalenko T, Osadchenko I, Ushakova G, Shmigel H, Fedkiv O, Majda B, Prykhodko O (2014) A piglet with surgically induced exocrine pancreatic insufficiency as an animal model of newborns to study fat digestion. Br J Nutr 112:2060–2067

    Article  CAS  PubMed  Google Scholar 

  115. Menard O, Cattenoz T, Guillemin H, Souchon I, Deglaire A, Dupont D, Picque D (2014) Validation of a new in vitro dynamic system to simulate infant digestion. Food Chem 145:1039–1045

    Article  CAS  PubMed  Google Scholar 

  116. McCue MD, Welch KC (2016) 13 C-breath testing in animals: theory, applications, and future directions. J Comp Physiol B 186:265–285

    Article  CAS  PubMed  Google Scholar 

  117. Szarka LA, Camilleri M (2009) Stomach dysfunction in diabetes mellitus: emerging technology and pharmacology. Am J Physiol Gastrointest Liver Physiol 296:G461–G475

    Article  CAS  PubMed  Google Scholar 

  118. Liu D, Parker HL, Curcic J, Schwizer W, Fried M, Kozerke S, Steingoetter A. The visualisation and quantification of human gastrointestinal fat distribution with MRI: a randomised study in healthy subjects. Br J Nutr. https://doi.org/10.1017/S0007114515005188

  119. Logan K, Wright AJ, Goff HD (2015) Correlating the structure and in vitro digestion viscosities of different pectin fibers to in vivo human satiety. Food Funct 6:63–71

    Article  PubMed  CAS  Google Scholar 

  120. Dietrich CF, Braden B (2009) Sonographic assessments of gastrointestinal and biliary functions. Best Pract Res Clin Gastroenterol 23:353–367

    Article  PubMed  Google Scholar 

  121. Ciuti G, Menciassi A, Dario P (2011) Capsule endoscopy: from current achievements to open challenges. IEEE Rev Biomed Eng 4:59–72

    Article  PubMed  Google Scholar 

  122. Saad RJ (2016) The wireless motility capsule: a one-stop shop for the evaluation of GI motility disorders. Curr Gastroenterol Rep 18:14

    Article  PubMed  Google Scholar 

  123. Maqbool S, Parkman HP, Friedenberg FK (2009) Wireless capsule motility: comparison of the SmartPill® GI monitoring system with scintigraphy for measuring whole gut transit. Dig Dis Sci 54:2167–2174

    Article  PubMed  Google Scholar 

  124. Benard C, Cultrone A, Michel C, Rosales C, Segain J-PP, Lahaye M, Galmiche J-PP, Cherbut C, Blottière HM (2010) Degraded carrageenan causing colitis in rats induces TNF secretion and ICAM-1 upregulation in monocytes through NF-κB activation. PLoS One 5:e8666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Robertson MD, Mathers JC (2000) Gastric emptying rate of solids is reduced in a group of ileostomy patients. Dig Dis Sci 45:1285–1292

    Article  CAS  PubMed  Google Scholar 

  126. Booijink CCGM, El-Aidy S, Rajilić-Stojanović M, Heilig HGHJ, Troost FJ, Smidt H, Kleerebezem M, De Vos WM, Zoetendal EG (2010) High temporal and inter‐individual variation detected in the human ileal microbiota. Environ Microbiol 12:3213–3227

    Article  CAS  PubMed  Google Scholar 

  127. Edwards CH, Grundy MM, Grassby T, Vasilopoulou D, Frost GS, Butterworth PJ, Berry SE, Sanderson J, Ellis PR (2015) Manipulation of starch bioaccessibility in wheat endosperm to regulate starch digestion, postprandial glycemia, insulinemia, and gut hormone responses: a randomized controlled trial in healthy ileostomy participants. Am J Clin Nutr 102:791–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri Lesmes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pascoviche, D.M., Lesmes, U. (2021). Lipid Digestion: In Vitro and In Vivo Models and Insights. In: Grundy, M.ML., Wilde, P.J. (eds) Bioaccessibility and Digestibility of Lipids from Food. Springer, Cham. https://doi.org/10.1007/978-3-030-56909-9_3

Download citation

Publish with us

Policies and ethics