Skip to main content

Reverse Firewalls for Actively Secure MPCs

Part of the Lecture Notes in Computer Science book series (LNSC,volume 12171)

Abstract

Reverse firewalls were introduced at Eurocrypt 2015 by Miro-nov and Stephens-Davidowitz, as a method for protecting cryptographic protocols against attacks on the devices of the honest parties. In a nutshell: a reverse firewall is placed outside of a device and its goal is to “sanitize” the messages sent by it, in such a way that a malicious device cannot leak its secrets to the outside world. It is typically assumed that the cryptographic devices are attacked in a “functionality-preserving way” (i.e. informally speaking, the functionality of the protocol remains unchanged under this attacks). In their paper, Mironov and Stephens-Davidowitz construct a protocol for passively-secure two-party computations with firewalls, leaving extension of this result to stronger models as an open question.

In this paper, we address this problem by constructing a protocol for secure computation with firewalls that has two main advantages over the original protocol from Eurocrypt 2015. Firstly, it is a multiparty computation protocol (i.e. it works for an arbitrary number n of the parties, and not just for 2). Secondly, it is secure in much stronger corruption settings, namely in the active corruption model. More precisely: we consider an adversary that can fully corrupt up to \(n-1\) parties, while the remaining parties are corrupt in a functionality-preserving way.

Our core techniques are: malleable commitments and malleable non-interactive zero-knowledge, which in particular allow us to create a novel protocol for multiparty augmented coin-tossing into the well with reverse firewalls (that is based on a protocol of Lindell from Crypto 2001).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-56880-1_26
  • Chapter length: 31 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-56880-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Notes

  1. 1.

    Since we use a NIZK proof system, we need to assume a trusted setup algorithm which generates a common reference string (CRS) to be used by all the parties. We assume that the CRS is hardwired inside the code of each party.

  2. 2.

    Informally, the exfiltration-resistant property stipulates that the corrupt implementation of party does not leak any information through the firewall. Weak exfiltration-resistance guarantees the same property when the party is corrupted in a functionality-maintaining way (and not arbitrarily).

  3. 3.

    One can modify the zero-knowledge proofs for the Graph Hamiltonicity problem or the 3-Coloring problem to obtain cm-IZK proofs by replacing the commitments with homomorphic commitments, similar to our coin-tossing protocol.

  4. 4.

    Although the protocol of Lindell [24] is constant round, its round-complexity is greater than 4 due to the use of (constant-round) zero-knowledge proofs. We use NIZK arguments in a natural way to shrink the round-complexity of the protocol to 3, albeit introducing a trusted setup assumption, as required for NIZK protocols.

References

  1. Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 468–499. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_16

    CrossRef  Google Scholar 

  2. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_29

    CrossRef  Google Scholar 

  3. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In: ACM CCS 2015 (2015)

    Google Scholar 

  4. Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_31

    CrossRef  Google Scholar 

  5. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_17

    CrossRef  Google Scholar 

  6. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: 20th ACM STOC (1988)

    Google Scholar 

  7. Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000). https://doi.org/10.1007/s001459910006

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Chakraborty, S., Dziembowski, S., Nielsen, J.B.: Reverse firewalls for actively secure MPCs. Cryptology ePrint Archive, Report 2019/1317. Extended version of this paper (2019)

    Google Scholar 

  9. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof systems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_18

    CrossRef  Google Scholar 

  10. Chen, R., Mu, Y., Yang, G., Susilo, W., Guo, F., Zhang, M.: Cryptographic reverse firewall via malleable smooth projective hash functions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 844–876. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_31

    CrossRef  Google Scholar 

  11. Cramer, R., Damgård, I.B., Nielsen, J.B.: Secure Multiparty Computation and Secret Sharing. Cambridge University Press, Cambridge (2015)

    CrossRef  Google Scholar 

  12. Dauterman, E., Corrigan-Gibbs, H., Mazières, D., Boneh, D., Rizzo, D.: True2F: backdoor-resistant authentication tokens. In: 2019 IEEE Symposium on Security and Privacy (2019)

    Google Scholar 

  13. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse firewalls—secure communication on corrupted machines. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 341–372. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_13

    CrossRef  Google Scholar 

  14. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Threshold ECDSA from ECDSA assumptions: the multiparty case. In: 2019 IEEE Symposium on Security and Privacy (2019)

    Google Scholar 

  15. Dolev, D., Strong, H.: Authenticated algorithms for Byzantine agreement. SIAM J. Comput. 12(4), 656–666 (1983)

    CrossRef  MathSciNet  Google Scholar 

  16. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_16

    CrossRef  Google Scholar 

  17. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless setup. In: ACM CCS 2018 (2018)

    Google Scholar 

  18. Goldreich, O.: Secure multi-party computation

    Google Scholar 

  19. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: 19th ACM STOC (1987)

    Google Scholar 

  20. Groth, J.: Homomorphic trapdoor commitments to group elements. Cryptology ePrint Archive, Report 2009/007 (2009)

    Google Scholar 

  21. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_29

    CrossRef  Google Scholar 

  22. Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security reduction. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 66–83. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_5

    CrossRef  Google Scholar 

  23. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27

    CrossRef  Google Scholar 

  24. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 171–189. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_10

    CrossRef  Google Scholar 

  25. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_16

    CrossRef  MATH  Google Scholar 

  26. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 657–686. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_22

    CrossRef  Google Scholar 

  27. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_26

    CrossRef  Google Scholar 

  28. Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Chaum, D. (ed.) CRYPTO 1983. Springer, Boston (1983). https://doi.org/10.1007/978-1-4684-4730-9_5

    CrossRef  Google Scholar 

  29. Waters, B.R.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_7

    CrossRef  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments and suggestions. The work was initiated while the first author was in IIT Madras, India. Part of this work was done while the author was visiting the University of Warsaw. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (682815 - TOCNeT) and from the Foundation for Polish Science under grant TEAM/2016-1/4 founded within the UE 2014–2020 Smart Growth Operational Program. The last author was supported by the Independent Research Fund Denmark project BETHE and the Concordium Blockchain Research Center, Aarhus University, Denmark.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suvradip Chakraborty , Stefan Dziembowski or Jesper Buus Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 International Association for Cryptologic Research

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Chakraborty, S., Dziembowski, S., Nielsen, J.B. (2020). Reverse Firewalls for Actively Secure MPCs. In: Micciancio, D., Ristenpart, T. (eds) Advances in Cryptology – CRYPTO 2020. CRYPTO 2020. Lecture Notes in Computer Science(), vol 12171. Springer, Cham. https://doi.org/10.1007/978-3-030-56880-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56880-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56879-5

  • Online ISBN: 978-3-030-56880-1

  • eBook Packages: Computer ScienceComputer Science (R0)