Abstract
We observe that all previously known lattice-based blind signature schemes contain subtle flaws in their security proofs (e.g., Rückert, ASIACRYPT ’08) or can be attacked (e.g., BLAZE by Alkadri et al., FC ’20). Motivated by this, we revisit the problem of constructing blind signatures from standard lattice assumptions.
We propose a new three-round lattice-based blind signature scheme whose security can be proved, in the random oracle model, from the standard SIS assumption. Our starting point is a modified version of the (insecure) BLAZE scheme, which itself is based Lyubashevsky’s three-round identification scheme combined with a new aborting technique to reduce the correctness error. Our proof builds upon and extends the recent modular framework for blind signatures of Hauck, Kiltz, and Loss (EUROCRYPT ’19). It also introduces several new techniques to overcome the additional challenges posed by the correctness error which is inherent to all lattice-based constructions.
While our construction is mostly of theoretical interest, we believe it to be an important stepping stone for future works in this area.
Keywords
- Blind signatures
- Forking lemma
- Lattices
This is a preview of subscription content, access via your institution.
Buying options









Notes
- 1.
ROS stands for Random inhomogenities in an Overdetermined, Solvable system of linear equations.
- 2.
It is not even clear how much better our scheme performs compared to generic constructions using non-interactive zero-knowledge proofs [23].
References
Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to signatures via the Fiat-Shamir transform: minimizing assumptions for security and forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 418–433. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_28
Abe, M.: A secure three-move blind signature scheme for polynomially many signatures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_9
Alkadri, N.A., Bansarkhani, R.E., Buchmann, J.: BLAZE: practical lattice-based blind signatures for privacy-preserving applications. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 484–502. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_26
Alkadri, N.A., Bansarkhani, R.E., Buchmann, J.: On lattice-based interactive protocols with aborts. Cryptology ePrint Archive, Report 2020/007 (2020). https://eprint.iacr.org/2020/007
Backendal, M., Bellare, M., Sorrell, J., Sun, J.: The Fiat-Shamir zoo: relating the security of different signature variants. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 154–170. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03638-6_10
Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 1087–1098. ACM Press, November 2013
Baldimtsi, F., Lysyanskaya, A.: On the security of one-witness blind signature schemes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 82–99. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_5
Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham, H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_7
Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006, pp. 390–399. ACM Press, October/November 2006
Bellare, M., Palacio, A.: GQ and Schnorr identification schemes: proofs of security against impersonation under active and concurrent attacks. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_11
Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple encryption. Cryptology ePrint Archive, Report 2004/331 (2004). http://eprint.iacr.org/2004/331
Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_3
Bouaziz-Ermann, S., Canard, S., Eberhart, G., Kaim, G., Roux-Langlois, A., Traoré, J.: Lattice-based (partially) blind signature without restart. Cryptology ePrint Archive, Report 2020/260 (2020). https://eprint.iacr.org/2020/260
Brands, S.: Untraceable off-line cash in wallet with observers. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_26
Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_18
Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_7
Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_33
Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 199–203. Plenum Press, New York (1982)
Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_25
Chen, L., Cui, Y., Tang, X., Hu, D., Wan, X.: Hierarchical ID-based blind signature from lattices. In: Wang, Y., Cheung, Y., Guo, P., Wei, Y. (eds.) Seventh International Conference on Computational Intelligence and Security, CIS 2011, Sanya, Hainan, China, 3–4 December 2011, pp. 803–807. IEEE Computer Society (2011)
Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_1
Döttling, N., Fleischhacker, N., Krupp, J., Schröder, D.: Two-message, oblivious evaluation of cryptographic functionalities. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 619–648. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_22
Fischlin, M.: Round-optimal composable blind signatures in the common reference string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_4
Fischlin, M., Schröder, D.: Security of blind signatures under aborts. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 297–316. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_17
Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_10
Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures in the standard model. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 233–253. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_12
Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_3
Gao, W., Hu, Y., Wang, B., Xie, J.: Identity-based blind signature from lattices in standard model. In: Chen, K., Lin, D., Yung, M. (eds.) Inscrypt 2016. LNCS, vol. 10143, pp. 205–218. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54705-3_13
Gao, W., Hu, Y., Wang, B., Xie, J., Liu, M.: Identity-based blind signature from lattices. Wuhan Univ. J. Nat. Sci. 22(4), 355–360 (2017). https://doi.org/10.1007/s11859-017-1258-x
Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_27
Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind signatures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_36
Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from identification schemes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 345–375. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_12
Hauck, E., Kiltz, E., Loss, J., Nguyen, N.K.: Lattice-based blind signatures, revisited. Cryptology ePrint Archive, Report 2020 (2020). https://eprint.iacr.org/2020
Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052233
Katz, J., Schröder, D., Yerukhimovich, A.: Impossibility of blind signatures from one-way permutations. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 615–629. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_37
Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Cryptogr. 75(3), 565–599 (2015)
Le, H.Q., Susilo, W., Khuc, T.X., Bui, M.K., Duong, D.H.: A blind signature from module latices. In: 2019 IEEE Conference on Dependable and Secure Computing (DSC), pp. 1–8. IEEE (2019)
Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_35
Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43
Lyubashevsky, V., Micciancio, D.: Generalized compact Knapsacks are collision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_13
Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclotomic rings and applications to lattice-based zero-knowledge proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 204–224. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_8
Minder, L., Sinclair, A.: The extended k-tree algorithm. In: Mathieu, C. (ed.) 20th SODA, pp. 586–595. ACM-SIAM, January 2009
Nguyen, N.K.: On the non-existence of short vectors in random module lattices. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part II. LNCS, vol. 11922, pp. 121–150. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_5
Okamoto, T.: Provably secure and practical identification schemes and corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_3
Okamoto, T.: Efficient blind and partially blind signatures without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_5
Okamoto, T., Ohta, K.: Universal electronic cash. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 324–337. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_27
Papachristoudis, D., Hristu-Varsakelis, D., Baldimtsi, F., Stephanides, G.: Leakage-resilient lattice-based partially blind signatures. Cryptology ePrint Archive, Report 2019/1452 (2019). https://eprint.iacr.org/2019/1452
Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_8
Pointcheval, D.: Strengthened security for blind signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 391–405. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054141
Pointcheval, D., Stern, J.: Provably secure blind signature schemes. In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 252–265. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0034852
Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_33
Pointcheval, D., Stern, J.: New blind signatures equivalent to factorization (extended abstract). In: Graveman, R., Janson, P.A., Neuman, C., Gong, L. (eds.) ACM CCS 1997, pp. 92–99. ACM Press, April 1997
Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3), 361–396 (2000)
Rodriuguez-Henriquez, F., Ortiz-Arroyo, D., Garcia-Zamora, C.: Yet another improvement over the Mu-Varadharajan e-voting protocol. Comput. Stand. Interfaces 29(4), 471–480 (2007)
Rogaway, P.: Formalizing human ignorance. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 211–228. Springer, Heidelberg (2006). https://doi.org/10.1007/11958239_14
Rückert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 413–430. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_24
Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991)
Schnorr, C.P.: Security of blind discrete log signatures against interactive attacks. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 1–12. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45600-7_1
Schröder, D., Unruh, D.: Security of blind signatures revisited. J. Cryptol. 30(2), 470–494 (2017)
Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_19
Yi, X., Lam, K.-Y., Gollmann, D.: A new blind ECDSA scheme for bitcoin transaction anonymity. Cryptology ePrint Archive, Report 2018/660 (2018). https://eprint.iacr.org/2018/660
Zhang, L., Ma, Y.: A lattice-based identity-based proxy blind signature scheme in the standard model. Math. Probl. Eng. 2014 (2014)
Zhu, H., Tan, Y., Zhang, X., Zhu, L., Zhang, C., Zheng, J.: A round-optimal lattice-based blind signature scheme for cloud services. Future Gener. Comput. Syst. 73, 106–114 (2017)
Acknowledgments
We would like to thank Vadim Lyubashevsky for pointing out the flaw in BLAZE and Dominique Schröder for helping us with previous work on blind signatures. We are furthermore very grateful for the anonymous comments by the CRYPTO 2020 reviewers. Eduard Hauck was supported by DFG SPP 1736 Big Data. Eike Kiltz was supported by the BMBF iBlockchain project, the EU H2020 PROMETHEUS project 780701, DFG SPP 1736 Big Data, and the DFG Cluster of Excellence 2092 CASA. Ngoc Khanh Nguyen was supported by the SNSF ERC Transfer Grant CRETP2-166734 FELICITY. Julian Loss was supported by the financial assistance award 70NANB19H126 from U.S. Department of Commerce, National Institute of Standards and Technology.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 International Association for Cryptologic Research
About this paper
Cite this paper
Hauck, E., Kiltz, E., Loss, J., Nguyen, N.K. (2020). Lattice-Based Blind Signatures, Revisited. In: Micciancio, D., Ristenpart, T. (eds) Advances in Cryptology – CRYPTO 2020. CRYPTO 2020. Lecture Notes in Computer Science(), vol 12171. Springer, Cham. https://doi.org/10.1007/978-3-030-56880-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-56880-1_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-56879-5
Online ISBN: 978-3-030-56880-1
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
https://iacr.org/