Advertisement

Chemical Anchoring of Molecular Rotors

  • Oumaima Aiboudi
  • Franziska LisselEmail author
Conference paper
  • 59 Downloads
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

A reliable anchoring on the substrate is the fundamental prerequisite to investigate surface-bound molecular rotors. The choice of the anchor group is dependent on the used substrate, and the surface-molecule bond must be sufficiently strong to endure under electrical operation. Here, we give an overview of anchor groups suitable to immobilize molecules on gold and other coinage metals via chemisorption. Sulfur-, nitrogen- and oxygen-based anchors are reviewed, N-heterocyclic carbenes as well as selected examples of other carbon-based anchors are considered, and examples of anchor groups reported for surface-bound molecular rotors are given. Anchoring is discussed in terms of the surface-molecule binding mode, i.e. radical adsorption and lone pair interaction. Green’s ligand classification, Pearson’s hard/soft- acid/base (HSAB) principle as well as the concepts denticity and podality are considered. Emphasis is placed on chemical aspects, e.g. the need to protect and controllably deprotect reactive anchors such as thiols and acetylenes.

Keywords

Chemical anchoring Molecular rotor Surface immobilization Binding mode 

Notes

Acknowledgements

O.A. thanks the Helmholtz International Research School for Nanoelectronic Networks (NanoNet) for a PhD fellowship, F.L. the Fonds der Chemischen Industrie (FCI) for a Liebig fellowship.

References

  1. 1.
    Fletcher, S.P., Dumur, F., Pollard, M.M., Feringa, B.L.: Chemistry: a reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310(5745), 80–82 (2005)Google Scholar
  2. 2.
    Kulago, A.A., Mes, E.M., Klok, M., Meetsma, A., Brouwer, A.M., Feringa, B.L.: Ultrafast light-driven nanomotors based on an acridane stator. J. Org. Chem. 75(3), 666–679 (2010)PubMedGoogle Scholar
  3. 3.
    Manzano, C., et al.: Step-by-step rotation of a molecule-gear mounted on an atomic-scale axis. Nat. Mater. 8(7), 576–579 (2009)PubMedGoogle Scholar
  4. 4.
    Molecular gears: wheels in motion. NPG Asia Mater. 1(1), 13 (2009)Google Scholar
  5. 5.
    Stipe, B.C., Rezaei, M.A., Ho, W.: Inducing and viewing the rotational motion of a single molecule. Science 279(5358), 1907–1909 (1998)Google Scholar
  6. 6.
    Gimzewski, J.K., Joachim, C., Schlittler, R.R., Langlais, V., Tang, H., Johannsen, I.: Rotation of a single molecule within a supramolecular bearing. Science 281(5376), 531–533 (1998)Google Scholar
  7. 7.
    Zheng, X., Mulcahy, M.E., Horinek, D., Galeotti, F., Magnera, T.F., Michl, J.: Dipolar and nonpolar altitudinal molecular rotors mounted on an Au(111) surface. J. Am. Chem. Soc. 126(14), 4540–4542 (2004)PubMedGoogle Scholar
  8. 8.
    Kottas, G.S., Clarke, L.I., Horinek, D., Michl, J.: Artificial molecular rotors. Chem. Rev 105(4), 1281–1376 (2005)Google Scholar
  9. 9.
    Xue, M., Wang, K.L.: Molecular rotors as switches. Sensors (Switzerland) 12(9), 11612–11637 (2012)Google Scholar
  10. 10.
    Perera, U.G.E., et al.: Controlled clockwise and anticlockwise rotational switching of a molecular motor. Nat. Nanotechnol. 8(1), 46–51 (2013)PubMedGoogle Scholar
  11. 11.
    Carroll, G.T., Pollard, M.M., van Delden, R., Feringa, B.L.: Controlled rotary motion of light-driven molecular motors assembled on a gold film. Chem. Sci. 1(1), 97–101 (2010)Google Scholar
  12. 12.
    Carroll, G.T., London, G., Landaluce, T.F., Rudolf, P., Feringa, B.L.: Adhesion of photon-driven molecular motors to surfaces via 1, 3-dipolar cycloadditions: effect of interfacial interactions on molecular motion. ACS Nano 5(1), 622–630 (2011)PubMedGoogle Scholar
  13. 13.
    Stipe, B.C., Rezaei, M.A., Ho, W. Inducing and viewing the rotational motion of a single molecule. Science 279(5358), 1907–1909 (1998)Google Scholar
  14. 14.
    Ulman, A.: Formation and structure of self-assembled monolayers. Chem. Rev. 96(4), 1533–1554 (1996)PubMedGoogle Scholar
  15. 15.
    Rao, B.V., Kwon, K.Y., Liu, A., Bartels, L.: 2, 5-dichlorothiophenol on Cu(111): initial adsorption site and scanning tunnel microscope-based abstraction of hydrogen at high intramolecular selectivity. J. Chem. Phys. 119(20), 10879–10884 (2003)Google Scholar
  16. 16.
    Lippert, E.: The strengths of chemical bonds, von T.L. Cottrell. Butterworths Publications Ltd., London 1958. 2. Aufl., X, 317 S., geb.t—/32/—. Angew. Chemie 72(16), 602–602 (1960)Google Scholar
  17. 17.
    Pensa, E., et al.: The chemistry of the sulfur-gold interface: in search of a unified model. Acc. Chem. Res. 45(8), 1183–1192 (2012)PubMedGoogle Scholar
  18. 18.
    Vericat, C., et al.: Self-assembled monolayers of thiolates on metals: a review article on sulfur-metal chemistry and surface structures. RSC Advances 4(53), 27730–27754 (2014). Royal Society of ChemistryGoogle Scholar
  19. 19.
    Valášek, M., Lindner, M., Mayor, M.: Rigid multipodal platforms for metal surfaces. Beilstein J. Nanotechnol. 7(1), 374–405 (2016). Beilstein-Institut Zur Forderung der Chemischen WissenschaftenGoogle Scholar
  20. 20.
    Kitagawa, T., et al.: Rigid molecular tripod with an adamantane framework and thiol legs. Synthesis and observation of an ordered monolayer on Au(111). J. Org. Chem. 71(4), 1362–1369 (2006)PubMedGoogle Scholar
  21. 21.
    Green, M.L.H.: A new approach to the formal classification of covalent compounds of the elements. J. Organomet. Chem. (1995)Google Scholar
  22. 22.
    Haaland, A.: Covalent versus dative bonds to main group metals, a useful distinction. Angew. Chemie Int. Ed. English 28(8), 992–1007 (1989)Google Scholar
  23. 23.
    Pearson, R.G.: Hard and soft Acids and bases. J. Am. Chem. Soc. 85(22), 3533–3539 (1963)Google Scholar
  24. 24.
    Chemical Hardness : Ralph, G. Pearson : 9783527294824. https://www.bookdepository.com/Chemical-Hardness-Ralph-G-Pearson/9783527294824. Accessed: 22 Apr 2020
  25. 25.
    Patrone, L., Palacin, S., Bourgoin, J.P., Lagoute, J., Zambelli, T., Gauthier, S.: Direct comparison of the electronic coupling efficiency of sulfur and selenium anchoring groups for molecules adsorbed onto gold electrodes. Chem. Phys. 281(2–3), 325–332 (2002)Google Scholar
  26. 26.
    Lissel, F., et al.: Organometallic single-molecule electronics: tuning electron transport through X(diphosphine)2FeC4Fe(diphosphine)2X building blocks by varying the Fe-X-Au anchoring scheme from coordinative to covalent. J. Am. Chem. Soc. 136(41), 14560–14569 (2014)PubMedGoogle Scholar
  27. 27.
    Grönbeck, H., Curioni, A., Andreoni, W.: Thiols and disulfides on the Au(111) surface: the headgroup-gold interaction. J. Am. Chem. Soc. 122(16), 3839–3842 (2000)Google Scholar
  28. 28.
    Reed, M.A., Zhou, C., Muller, C.J., Burgin, T.P., Tour, J. M.: Conductance of a molecular junction. Science 278(5336), 252–254 (1997)Google Scholar
  29. 29.
    Schwarz, F., et al.: High-conductive organometallic molecular wires with delocalized electron systems strongly coupled to metal electrodes. (2014)Google Scholar
  30. 30.
    Yaliraki, S.N., Kemp, M., Ratner, M.A.: Conductance of molecular wires: influence of molecule-electrode binding. J. Am. Chem. Soc. 121(14), 3428–3434 (1999)Google Scholar
  31. 31.
    Valkenier, H., Huisman, E.H., van Hal, P.A., de Leeuw, D.M., Chiechi, R.C., Hummelen, J.C.: Formation of high-quality self-assembled monolayers of conjugated dithiols on gold: base matters. J. Am. Chem. Soc. 133(13), 4930–4939 (2011)PubMedGoogle Scholar
  32. 32.
    Tielens, F., Santos, E.: AuS and SH bond formation/breaking during the formation of alkanethiol SAMs on Au(111): a theoretical study. J. Phys. Chem. C 114(20), 9444–9452 (2010)Google Scholar
  33. 33.
    Whetten, R.L., Price, R.C.: Chemistry: nano-golden order. Science 318(5849), 407–408 (2007). American Association for the Advancement of ScienceGoogle Scholar
  34. 34.
    Lukkari, J., et al.: Organic thiosulfates (bunte salts): novel surface-active sulfur compounds for the preparation of self-assembled monolayers on gold. Langmuir 15(10), 3529–3537 (1999)Google Scholar
  35. 35.
    Niebel, C., Calard, F., Jarrosson, T., Lère-Porte, J.P., Breton, T., Serein-Spirau, F.: Spontaneous assembly of silylethane-thiol derivatives on Au(111): a chemically robust thiol protecting group as the precursor for the direct formation of aromatic gold thiolate monolayers. Chem. Commun. 51(36), 7622–7625 (2015)Google Scholar
  36. 36.
    Cai, L., Yao, Y., Yang, J., Price, D.W., Tour, J.M.: Chemical and potential-assisted assembly of thiolacetyl-terminated oligo(phenylene ethynylene)s on gold surfaces. Chem. Mater. 14(7), 2905–2909 (2002)Google Scholar
  37. 37.
    Béthencourt, M.I., Srisombat, L.O., Chinwangso, P., Lee, T.R.: SAMs on gold derived from the direct adsorption of alkanethioacetates are inferior to those derived from the direct adsorption of alkanethiols. Langmuir 25(3), 1265–1271 (2009)PubMedGoogle Scholar
  38. 38.
    Tour, J.M., et al.: Self-assembled monolayers and multilayers of conjugated thiols, α, ω-dithiols, and thioacetyl-containing adsorbates. Understanding attachments between potential molecular wires and gold surfaces. J. Am. Chem. Soc. 117(37), 9529–9534 (1995)Google Scholar
  39. 39.
    Biebuyck, H.A., Bain, C.D., Whitesides, G.M.: Comparison of organic monolayers on polycrystalline gold spontaneously assembled from solutions containing dialkyl disulfides or alkanethiols. Langmuir 10(6), 1825–1831 (1994)Google Scholar
  40. 40.
    Hagenhoff, B., Benninghoven, A., Spinke, J., Liley, M., Knoll, W.: Time-of-flight secondary ion mass spectrometry investigations of self-assembled monolayers of organic thiols, sulfides, and disulfides on gold surfaces. Langmuir 9(7), 1622–1624 (1993). American Chemical SocietyGoogle Scholar
  41. 41.
    Häkkinen, H.: The gold-sulfur interface at the nanoscale. Nat. Chem. 4(6), 443–455 (2012). Nature Publishing GroupGoogle Scholar
  42. 42.
    Park, Y.S., et al.: Contact chemistry and single-molecule conductance: A comparison of phosphines, methyl sulfides, and amines. J. Am. Chem. Soc. 129(51), 15768–15769 (2007)PubMedGoogle Scholar
  43. 43.
    Morf, P., et al.: Dithiocarbamates: functional and versatile linkers for the formation of self-assembled monolayers. Langmuir 22(2), 658–663 (2006)PubMedGoogle Scholar
  44. 44.
    Colorado, R., Villazana, R.J., Lee, T.R.: Self-assembled monolayers on gold generated from aliphatic dithiocarboxylic acids. Langmuir 14(22), 6337–6340 (1998)Google Scholar
  45. 45.
    Tierney, H.L., et al.: Experimental demonstration of a single-molecule electric motor. Nat. Nanotechnol. 6(10), 625–629 (2011)PubMedGoogle Scholar
  46. 46.
    Baber, A.E., Tierney, H.L., Sykes, E.C.H.: A quantitative single-molecule study of thioether molecular rotors. ACS Nano 2(11), 2385–2391 (2008)PubMedGoogle Scholar
  47. 47.
    Koumura, N., Geertsema, E.M., Meetsma, A., Feringa, B.L.: Light-driven molecular rotor: unidirectional rotation controlled by a single stereogenic center [6]. J. Am. Chem. Soc. 122(48), 12005–12006 (2000). American Chemical SocietyGoogle Scholar
  48. 48.
    Van Delden, R.A., Ter Wiel, M.K.J., Pollard, M.M., Vicario, J., Koumura, N., Feringa, B.L.: Unidirectional molecular motor on a gold surface. Nature 437(7063), 1337–1340 (2005)PubMedGoogle Scholar
  49. 49.
    Benneckendorf, F.S., et al.: Tetrapodal diazatriptycene enforces orthogonal orientation in self-assembled monolayers. ACS Appl. Mater. Interfaces. 12(5), 6565–6572 (2020)PubMedGoogle Scholar
  50. 50.
    Arroyo, C.R., Leary, E., Castellanos-Gómez, A., Rubio-Bollinger, G., González, M.T., Agraït, N.: Influence of binding groups on molecular junction formation. J. Am. Chem. Soc. 133(36), 14313–14319 (2011)PubMedGoogle Scholar
  51. 51.
    Venkataraman, L., Klare, J.E., Tam, I.W., Nuckolls, C., Hybertsen, M.S., Steigerwald, M.L.: Single-molecule circuits with well-defined molecular conductance (2006)Google Scholar
  52. 52.
    Zhang, L., Cole, J.M.: Anchoring groups for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 7(6), 3427–3455 (2015). American Chemical SocietyGoogle Scholar
  53. 53.
    Mishchenko, A., et al.: Single-molecule junctions based on nitrile-terminated biphenyls: a promising new anchoring group. J. Am. Chem. Soc. 133(2), 184–187 (2010)PubMedGoogle Scholar
  54. 54.
    Venkataraman, L., Klare, J.E., Tam, I.W., Nuckolls, C., Hybertsen, M.S., Steigerwald, M.L.: Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6(3), 458–462 (2006)PubMedGoogle Scholar
  55. 55.
    Ie, Y., et al.: Nature of electron transport by pyridine-based tripodal anchors: Potential for robust and conductive single-molecule junctions with gold electrodes. J. Am. Chem. Soc. 133(9), 3014–3022 (2011)PubMedGoogle Scholar
  56. 56.
    Gao, L., et al.: Constructing an array of anchored single-molecule rotors on gold surfaces. Phys. Rev. Lett. 101(19), 197209 (2008)PubMedGoogle Scholar
  57. 57.
    Kirmse, W.: The beginnings of N-Heterocyclic carbenes. Angew. Chemie Int. Ed. 49(47), 8798–8801 (2010)Google Scholar
  58. 58.
    Zhukhovitskiy, A.V., MacLeod, M.J., Johnson, J.A.: Carbene ligands in surface chemistry: from stabilization of discrete elemental allotropes to modification of nanoscale and bulk substrates. Chem. Rev. 115(20), 11503–11532 (2015)PubMedGoogle Scholar
  59. 59.
    Nguyen, D.T., et al.: Versatile micropatterns of N-Heterocyclic carbenes on gold surfaces: increased thermal and pattern stability with enhanced conductivity. Angew. Chemie Int. Ed. 57(35), 11465–11469 (2018)Google Scholar
  60. 60.
    H. Jacobsen, A. Correa, A. Poater, C. Costabile, and L. Cavallo, “Understanding the M–(NHC) (NHC = N-heterocyclic carbene) bond. Coord. Chem. Rev. 253(5–6), 687–703. Elsevier (2009)Google Scholar
  61. 61.
    Crudden, C.M., et al.: Simple direct formation of self-assembled N-heterocyclic carbene monolayers on gold and their application in biosensing. Nat. Commun. 7(1), 1–7 (2016)Google Scholar
  62. 62.
    Zhukhovitskiy, A.V., Mavros, M.G., Van Voorhis, T., Johnson, J.A.: Addressable Carbene Anchors for Gold Surfaces. J. Am. Chem. Soc. 135(20), 7418–7421 (2013)PubMedGoogle Scholar
  63. 63.
    Crudden, C.M., et al.: Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nat. Chem. 6(5), 409–414 (2014)PubMedGoogle Scholar
  64. 64.
    Dery, S. et al.: Flexible NO2 ‐functionalized N‐Heterocyclic carbene monolayers on Au (111) surface. Chem.A Eur. J. 25(66), 15067–15072 (2019)Google Scholar
  65. 65.
    Bakker, A., et al.: Elucidating the binding modes of N-Heterocyclic carbenes on a gold surface. J. Am. Chem. Soc. 140(38), 11889–11892 (2018)PubMedGoogle Scholar
  66. 66.
    Larrea, C.R., Baddeley, C.J., Narouz, M.R., Mosey, N.J., Horton, J.H., Crudden, C.M.: N -Heterocyclic carbene self-assembled monolayers on copper and gold: dramatic effect of wingtip groups on binding, orientation and assembly. ChemPhysChem 18(24), 3536–3539 (2017)PubMedPubMedCentralGoogle Scholar
  67. 67.
    Wang, G., et al.: Ballbot-type motion of N-heterocyclic carbenes on gold surfaces. Nat. Chem. 9(2), 152–156 (2017)PubMedGoogle Scholar
  68. 68.
    Zhang, Z., Imae, T.: Hydrogen-bonding stabilized self-assembled monolayer film of a functionalized diacid, protoporphyrin IX Zinc(II), onto a gold surface. Nano Lett. 1(5), 241–243 (2001)Google Scholar
  69. 69.
    Rochford, J., Chu, D., Hagfeldt, A., Galoppini, E.: Tetrachelate porphyrin chromophores for metal oxide semiconductor sensitization: Effect of the spacer length and anchoring group position. J. Am. Chem. Soc. 129(15), 4655–4665 (2007)PubMedGoogle Scholar
  70. 70.
    Zotti, L.A., et al.: Revealing the role of anchoring groups in the electrical conduction through single-molecule junctions. Small 6(14), 1529–1535 (2010)PubMedGoogle Scholar
  71. 71.
    Eisenhut, F., Meyer, J., Krüger, J., Ohmann, R., Cuniberti, G., Moresco, F.: Inducing the controlled rotation of single o-MeO-DMBI molecules anchored on Au(111). Surf. Sci. 678, 177–182 (2018)Google Scholar
  72. 72.
    Tao, Y.T.: Structural comparison of self-assembled monolayers of n-Alkanoic acids on the surfaces of silver, copper, and aluminum. J. Am. Chem. Soc. 115(10), 4350–4358 (1993)Google Scholar
  73. 73.
    Krzykawska, A., Ossowski, J., Zaba, T., Cyganik, P.: Binding groups for highly ordered SAM formation: carboxylic: versus thiol. Chem. Commun. 53(42), 5748–5751 (2017)Google Scholar
  74. 74.
    Han, S.W., Ha, T.H., Kim, C.H., Kim, K.: Self-assembly of anthraquinone-2-carboxylic acid on silver: fourier transform infrared spectroscopy, ellipsometry, quartz crystal microbalance, and atomic force microscopy study. Langmuir 14(21), 6113–6120 (1998)Google Scholar
  75. 75.
    Ahn, S., et al.: Electronic transport and mechanical stability of carboxyl linked single-molecule junctions. Phys. Chem. Chem. Phys. 14(40), 13841–13845 (2012)PubMedGoogle Scholar
  76. 76.
    Matsuo, Y., Kanaizuka, K., Matsuo, K., Zhong, Y.W., Nakae, T., Nakamura, E.: Photocurrent-generating properties of organometallic fullerene molecules on an electrode. J. Am. Chem. Soc. 130(15), 5016–5017 (2008)PubMedGoogle Scholar
  77. 77.
    Olavarria-Contreras, I.J., Perrin, M.L., Chen, Z., Klyatskaya, S., Ruben, M., Van Der Zant, H.S.J.: C-Au covalently bonded molecular junctions using nonprotected Alkynyl anchoring groups. J. Am. Chem. Soc. 138(27), 8465–8469 (2016)PubMedGoogle Scholar
  78. 78.
    Liu, J., et al.: Triptycene-terminated thiolate and selenolate monolayers on Au(111). Beilstein J. Nanotechnol. 8(1), 892–905 (2017)PubMedPubMedCentralGoogle Scholar
  79. 79.
    Schull, G., Néel, N., Becker, M., Kröger, J., Berndt, R.: Spatially resolved conductance of oriented C 60. New J. Phys. 10(6), 065012 (2008)Google Scholar
  80. 80.
    Valášek, M., Edelmann, K., Gerhard, L., Fuhr, O., Lukas, M., Mayor, M.: Synthesis of molecular tripods based on a rigid 9, 9’-spirobifluorene scaffold. J. Org. Chem. 79(16), 7342–7357 (2014)PubMedGoogle Scholar
  81. 81.
    Shirai, Y., Cheng, L., Chen, B., Tour, J.M.: Characterization of self-assembled monolayers of fullerene derivatives on gold surfaces: Implications for device evaluations. J. Am. Chem. Soc. 128(41), 13479–13489 (2006)PubMedGoogle Scholar
  82. 82.
    O’Driscoll, L.J., et al.: Carbazole-based tetrapodal anchor groups for gold surfaces: synthesis and conductance properties. Angew. Chemie 132(2), 892–899 (2020)Google Scholar
  83. 83.
    Hirose, T., Ie, Y., Aso, Y.: Synthesis of tripodal-anchor units having pyridine or amine functional groups and their adsorption behavior on metal electrodes. Chem. Lett. 40(2), 204–205 (2011)Google Scholar
  84. 84.
    Zarwell, S., Dietrich, S., Schulz, C., Dietrich, P., Michalik, F., Rück-Braun, K.: Preparation of an Indolylfulgimide-Adamantane Linker Conjugate with Nitrile Anchoring Groups through Palladium-Catalyzed transformations. European J. Org. Chem. 2009(13), 2088–2095 (2009)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Macromolecular Chemistry (IMC), Leibniz Institute for Polymer Research Dresden (IPF)DresdenGermany
  2. 2.Institute of ChemistryTechnical University DresdenDresdenGermany
  3. 3.Cfaed Center for Advancing Electronics Dresden, Technical University DresdenDresdenGermany

Personalised recommendations