Skip to main content

Prototypes of Molecular Gears with an Organometallic Piano-Stool Architecture

  • Conference paper
  • First Online:
Building and Probing Small for Mechanics

Abstract

In the field of Molecular Machines, molecular gears have mainly been synthesized to be studied in solution. Then, the cogwheel subunits are restricted to be only arranged in an intramolecular manner. In the last years, the possibility to arrange a train of gears at the single molecular level and observe the propagation of a rotation motion from one molecule to its neighbor using Scanning Tunneling Microscopy (STM) opened new perspectives with the opportunity to have intermolecular arrangements on surfaces. In this chapter, we describe the research background of single molecular gears and our strategy using organometallic piano-stool complexes to anchor such gears on surfaces. Our molecules incorporate two subunits linked together through a ruthenium center acting as a ball bearing. The lower part is the anchoring tripodal ligand and the upper part the cogwheel. Various functionalities have been explored to behave as teeth, ranging from mono-dimensional phenyl rings to bi-dimensional porphyrin fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sauvage, J.-P.: From chemical topology to molecular machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11080 (2017)

    CAS  Google Scholar 

  2. Stoddart, J.F.: Mechanically interlocked molecules (MIMs)-molecular shuttles, switches, and machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11094 (2017)

    CAS  Google Scholar 

  3. Feringa, B.L.: The art of building small: from molecular switches to motors (Nobel Lecture) Angew. Chem. Int. Ed. 56, 11060 (2017)

    CAS  Google Scholar 

  4. Kammerer, C., Erbland, G., Gisbert, Y., Nishino, T., Yasuhara, K., Rapenne, G.: Biomimetic and technomimetic single molecular machines. Chem. Lett. 48, 299 (2019)

    CAS  Google Scholar 

  5. Ikeda, A., Tsudera, T., Shinkai, S.: Molecular design of a “molecular syringe” mimic for metal cations using a 1,3-alternate calix[4]arene cavity. J. Org. Chem. 62, 3568 (1997)

    CAS  Google Scholar 

  6. Joachim, C., Rapenne, G.: Molecule concept nanocars: chassis, wheels, and motors? ACS Nano 7, 11 (2013)

    CAS  PubMed  Google Scholar 

  7. Chu, P.-L.E., Wang, L.-Y., Khatua, S., Kolomeisky, A.B., Link, S., Tour, J.M.: Synthesis and single-molecule imaging of highly mobile adamantane-wheeled nanocars. ACS Nano 7, 35 (2013)

    CAS  PubMed  Google Scholar 

  8. Jacquot de Rouville, H.-P., Garbage, R., Ample, F., Nickel, A., Meyer, J., Moresco, F., Joachim, C., Rapenne, G.: Synthesis and STM imaging of symmetric and dissymmetric ethynyl-bridged dimers of boron-subphthalocyanine bowl-shaped nano-wheels. Chem. Eur. J. 18, 8925 (2012)

    Google Scholar 

  9. Nickel, A., Meyer, J., Ohmann, R., Jacquot de Rouville, H.-P., Rapenne, G., Joachim, C., Cuniberti, G., Moresco, F.: STM Manipulation of boron-subphthalocyanine nano-wheel dimers on Au(111). J. Phys. Condens. Matter 24, 404001 (2012)

    Google Scholar 

  10. Jimenez-Bueno, G., Rapenne, G.: Technomimetic molecules: synthesis of a molecular wheelbarrow. Tetrahedron Lett. 44, 6261 (2003)

    CAS  Google Scholar 

  11. Rapenne, G., Jimenez-Bueno, G.: Molecular machines: synthesis and characterization of two prototypes of molecular wheelbarrows. Tetrahedron 63, 7018 (2007)

    CAS  Google Scholar 

  12. Grill, L., Rieder, K.-H., Moresco, F., Jimenez-Bueno, G., Wang, C., Rapenne, G., Joachim, C.: Imaging of a molecular wheelbarrow by scanning tunneling microscopy. Surf. Science 584, 153 (2005)

    Google Scholar 

  13. Shirai, Y., Osgood, A., Zhao, Y., Kelly, K.F., Tour, J.M.: Directional control in thermally driven single-molecule nanocars. Nano Lett. 5, 2330 (2005)

    CAS  PubMed  Google Scholar 

  14. Vives, G., Tour, J.M.: Synthesis of single-molecule nanocars. Acc. Chem. Res. 42, 473 (2009)

    CAS  PubMed  Google Scholar 

  15. Jacquot de Rouville, H.-P., Garbage, R., Cook, R.E., Pujol, A.R., Sirven, A.M., Rapenne, G.: Synthesis of polycyclic aromatic hydrocarbon-based nanovehicles equipped with triptycene wheels. Chem. Eur. J. 18, 3023 (2012)

    Google Scholar 

  16. Kudernac, T., Ruangsupapichat, N., Parschau, M., Maciá, B., Katsonis, N., Harutyunyan, S.R., Ernst, K.-H., Feringa, B.L.: Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208 (2011)

    CAS  PubMed  Google Scholar 

  17. Rapenne, G., Joachim, C.: World’s first nanocar race: a single molecule piloted per team. Nature Rev. Mater. 2, 17040 (2017)

    Google Scholar 

  18. Muraoka, T., Kinbara, T., Kobayashi, Y., Aida, T.: Light-driven open−close motion of chiral molecular scissors. J. Am. Chem. Soc. 125, 5612 (2003)

    CAS  PubMed  Google Scholar 

  19. Badjić, J.D., Balzani, V., Credi, A., Silvi, S., Stoddart, J.F.: A molecular elevator. Science 303, 1845 (2004)

    PubMed  Google Scholar 

  20. Khuong, T.-A.V., Dang, H., Jarowski, P.D., Maverick, E.F., Garcia-Garibay, M.A.: Rotational dynamics in a crystalline molecular gyroscope by variable-temperature 13C NMR, 2H NMR, X-ray diffraction, and force field calculations. J. Am. Chem. Soc. 129, 839 (2007)

    CAS  PubMed  Google Scholar 

  21. Kelly, T.R., de Silva, H., Silva, R.A.: Unidirectional rotary motion in a molecular system. Nature 401, 150 (1999)

    CAS  PubMed  Google Scholar 

  22. Koumura, N., Zijlstra, R.W.J., van Delden, R.A., Harada, N., Feringa, B.L.: Light-driven monodirectional molecular motor. Nature 401, 152 (1999)

    CAS  PubMed  Google Scholar 

  23. Ruangsupapichat, N., Pollard, M.M., Harutyunyan, S.R., Feringa, B.L.: Reversing the direction in a light-driven rotary molecular motor. Nature Chem. 3, 53 (2011)

    CAS  Google Scholar 

  24. Hernandez, J.V., Kay, E.R., Leigh, D.A.: A reversible synthetic rotary molecular motor. Science 306, 1532 (2004)

    CAS  PubMed  Google Scholar 

  25. Kassem, S., van Leeuwen, T., Lubbe, A.S., Wilson, M.R., Feringa, B.L., Leigh, D.A.: Artificial molecular motors. Chem. Soc. Rev. 46, 2592 (2017)

    CAS  PubMed  Google Scholar 

  26. Jian, H., Tour, J.M.: En route to surface-bound electric field-driven molecular motors. J. Org. Chem. 68, 5091 (2003)

    CAS  PubMed  Google Scholar 

  27. Garcia-Lopez, V., Liu, D., Tour, J.M.: Light-activated organic molecular motors and their applications. Chem. Rev. 120, 79 (2020)

    CAS  PubMed  Google Scholar 

  28. Vives, G., Jacquot de Rouville, H.-P., Carella, A., Launay, J.-P., Rapenne, G.: Prototypes of molecular motors based on star-shaped organometallic ruthenium complexes. Chem. Soc. Rev. 38, 1551 (2009)

    Google Scholar 

  29. Perera, U.G.E., Ample, F., Echeverria, J., Kersell, H., Zhang, Y., Vives, G., Rapenne, G., Joachim, C., Hla, S.-W.: Controlled clockwise and anticlockwise rotational switching of a molecular motor. Nature Nanotechnol. 8, 46 (2013)

    CAS  Google Scholar 

  30. Tierney, H.L., Murphy, C.J., Jewell, A.D., Baber, A.E., Iski, E.V., Khodaverdian, H.Y., McGuire, A.F., Klebanov, N., Sykes, E.C.H.: Experimental demonstration of a single-molecule electric motor. Nature Nanotechnol. 6, 625 (2011)

    CAS  Google Scholar 

  31. Baroncini, M., Silvi, S., Credi, A.: Photo-and redox-driven artificial molecular motors. Chem. Rev. 120, 200 (2020)

    CAS  PubMed  Google Scholar 

  32. Zhang, Y., Calupitan, J.P., Rojas, T., Tumbleson, R., Erbland, G., Kammerer, C., Ajayi, T.M., Wang, S., Curtiss, L.C., Ngo, A.T., Ulloa, S.E., Rapenne, G., Hla, S.W.: A chiral molecular propeller designed for unidirectional rotations on a surface. Nature Commun. 10, 3742 (2019)

    Google Scholar 

  33. Grill, L., Rieder, K.-H., Moresco, F., Rapenne, G., Stojkovic, S., Bouju, X., Joachim, C.: Rolling a single molecular wheel at the atomic scale. Nature Nanotechnol. 2, 95 (2007)

    CAS  Google Scholar 

  34. Zhang, Y., Kersell, H., Stefak, R., Echeverria, J., Iancu, V., Perera, U.G.E., Li, Y., Deshpande, A., Braun, K.-F., Joachim, C., Rapenne, G., Hla, S.W.: Simultaneous and coordinated rotational switching of all molecular rotors in a network. Nature Nanotechnol. 11, 706 (2016)

    CAS  Google Scholar 

  35. Burrows, M., Sutton, G.: Interacting gears synchronize propulsive leg movements in a jumping insect. Science 341, 1254 (2013)

    CAS  PubMed  Google Scholar 

  36. Breslow, R.: Biomimetic chemistry: biology as an inspiration. J. Biol. Chem. 284, 1337 (2008)

    PubMed  Google Scholar 

  37. Kawada, Y., Iwamura, H.: Unconventional synthesis and conformational flexibility of bis(1-triptycyl)ether. J. Org. Chem. 45, 2547 (1980)

    CAS  Google Scholar 

  38. Hounshell, W.D., Johnson, C.A., Guenzi, A., Cozzi, F., Mislow, K.: Stereochemical consequences of dynamic gearing in substituted bis(9-triptycyl)methanes and related molecules. Proc. Natl. Acad. Sci. U.S.A. 77, 6961 (1980)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Frantz, D.K., Linden, A., Baldridge, K.K., Siegel, J.: Molecular spur gears comprising triptycene rotators and bibenzimidazole-based stators. J. Am. Chem. Soc. 134, 1528 (2012)

    CAS  PubMed  Google Scholar 

  40. Ube, H., Yasuda, Y., Sato, H., Shionoya, M.: Metal-centred azaphosphatriptycene gear with a photo- and thermally driven mechanical switching function based on coordination isomerism. Nature Commun. 8, 14296 (2017)

    CAS  Google Scholar 

  41. Chiaravalloti, F., Gross, L., Rieder, K.-H., Stojkovic, S.M., Gourdon, A., Joachim, C., Moresco, F.: A rack-and-pinion device at the molecular scale. Nature Mater. 6, 30 (2007)

    CAS  Google Scholar 

  42. Manzano, C., Soe, W.-H., Wong, H.S., Ample, F., Gourdon, A., Chandrasekhar, N., Joachim, C.: Step-by-step rotation of a molecule-gear mounted on an atomic-scale axis. Nature Mater. 8, 576 (2009)

    CAS  Google Scholar 

  43. Soe, W.-H., Srivastava, S., Joachim, C.: Train of single molecule-gears. J. Phys. Chem. Lett. 10, 6462 (2019)

    CAS  PubMed  Google Scholar 

  44. Kammerer, C., Rapenne, G.: Scorpionate hydrotris(indazolyl)borate ligands as tripodal platform for surface-mounted molecular motors and gears. Eur. J. Inorg. Chem. 2214 (2016)

    Google Scholar 

  45. Erbland, G., Gisbert, Y., Rapenne, G., Kammerer, C.: Expedient synthesis of thioether-functionalized hydrotris(indazolyl) borate as an anchoring platform for rotary molecular machines. Eur. J. Org. Chem. 4731 (2018)

    Google Scholar 

  46. Erbland, G., Abid, S., Gisbert, Y., Saffon-Merceron, N., Hashimoto, Y., Andreoni, L., Guérin, T., Kammerer, C., Rapenne, G.: Star-shaped ruthenium complexes as prototypes of molecular gears. Chem. Eur. J. 25, 16328 (2019)

    CAS  PubMed  Google Scholar 

  47. Lindsey, J.S., Hsu, H.C., Schreiman, I.C.: Synthesis of tetraphenylporphyrin under very mild conditions. Tetrahedron Lett. 27, 4969 (1986)

    CAS  Google Scholar 

  48. Gisbert, Y., Abid, S., Bertrand, G., Saffon-Merceron, N., Kammerer, C., Rapenne, G.: Modular synthesis of pentaarylcyclopentadienyl Ru-based molecular machines via sequential Pd-catalysed cross couplings. Chem. Commun. 55, 14689 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the University Paul Sabatier (Toulouse, France) and the CNRS. It has received funding from the Agence Nationale de la Recherche (ANR) (ACTION project ANR-15-CE29-0005) and from the European Union’s Horizon 2020 research and innovation program under the project MEMO, grant agreement No 766864. This research was also partly supported by the JSPS KAKENHI grant in aid for Scientific Research on Innovative Areas “Molecular Engine (No. 8006)” 18H05419. Dr. Colin Martin is warmly acknowledged for his careful reading and improving of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwénaël Rapenne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abid, S., Erbland, G., Kammerer, C., Rapenne, G. (2020). Prototypes of Molecular Gears with an Organometallic Piano-Stool Architecture. In: Joachim, C. (eds) Building and Probing Small for Mechanics . Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-030-56777-4_5

Download citation

Publish with us

Policies and ethics