Skip to main content

Mean Value Test for Three-Level Multivariate Observations with Doubly Exchangeable Covariance Structure

  • Chapter
  • First Online:
Recent Developments in Multivariate and Random Matrix Analysis

Abstract

We consider matrix-valued multivariate observation model with three-level doubly-exchangeable covariance structure. We derive estimators of unknown parameters and their distributions under multivariate normality assumption. Test statistic for testing a mean value is proposed, and its exact distribution is derived. Several methods of computing p-values and critical values of the distribution are compared in real data example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Filipiak, K., Klein, D., Vojtková, E.: The properties of partial trace and block trace operators of partitioned matrices. Electr. J. Linear Algebra 33, 3–15 (2018)

    Article  MathSciNet  Google Scholar 

  2. Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis, 6th edn. Pearson Prentice Hall, New Jersey (2007)

    MATH  Google Scholar 

  3. Klein, D., Žežula, I.: Orthogonal decompositions in growth curve models. Acta et Comment. Univ. Tartu. de Math. 14, 35–44 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Leiva, R.: Linear discrimination with equicorrelated training vectors. J. Multivar. Anal. 98, 384–409 (2007)

    Article  MathSciNet  Google Scholar 

  5. Leiva, R., Roy, A.: Linear Discrimination for Multi-level Multivariate Data with Separable Means and Jointly Equicorrelated Covariance Structure. J. Stat. Plan. Inference 141(5), 1910–1924 (2011)

    Article  MathSciNet  Google Scholar 

  6. Leiva, R., Roy, A.: Linear discrimination for three-level multivariate data with separable additive mean vector and doubly exchangeable covariance structure. Comput. Stat. Data Anal. 56(6), 1644–1661 (2012)

    Article  MathSciNet  Google Scholar 

  7. Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate Analysis. Academic, New York (1979)

    MATH  Google Scholar 

  8. McKeon, J.J.: F-approximations to the distribution of Hotelling’s \(T^2_0\). Biometrika 61(2), 381–383 (1974)

    Google Scholar 

  9. Muirhead, R.J.: Aspects of Multivariate Statistical Theory, Second Ed. New York: John Wiley & Sons (2005)

    MATH  Google Scholar 

  10. Rao, C.R.: Familial correlations or the multivariate generalizations of the intraclass correlation. Curr. Sci. 14, 66–67 (1945)

    Google Scholar 

  11. Rao, C.R.: Discriminant functions for genetic differentiation and selection. Sankhyā 12, 229–246 (1953)

    MathSciNet  MATH  Google Scholar 

  12. Rao, C.R.: Linear Statistical Inference and Its Applications, 2nd edn. Wiley, New York (1973)

    Book  Google Scholar 

  13. Regalia, P., Mitra, S.: Kronecker products, unitary matrices and signal processing applications, SIAM review 31(4), 586–613 (1989)

    Article  MathSciNet  Google Scholar 

  14. Roy, A., Leiva, R.: Likelihood Ratio Tests for Triply Multivariate Data with Structured Correlation on Spatial Repeated Measurements. Statist. Probab. Lett. 78(13), 1971–1980 (2008)

    Article  MathSciNet  Google Scholar 

  15. Roy, A., Leiva, R.: Estimating and Testing a Structured Covariance Matrix for Three-level Multivariate Data. Commun. Stat. - Theory Methods 40(10), 1945–1963 (2011)

    Article  MathSciNet  Google Scholar 

  16. Roy, A., Fonseca, M.: Linear Models with Doubly Exchangeable Distributed Errors. Commun. Stat. - Theory Methods 41(13), 2545–2569 (2012)

    Article  MathSciNet  Google Scholar 

  17. Roy, A., Leiva, R., Žežula, I., Klein, D.: Testing the equality of mean vectors for paired doubly multivariate observations in blocked compound symmetric covariance matrix setup. J. Multivar. Anal. 137, 50–60 (2015)

    Article  MathSciNet  Google Scholar 

  18. Witkovský, V.: Computing the exact distribution of the Bartlett’s test statistic by numerical inversion of its characteristic function. J. Appl. Stat. 1–16 (2019). https://doi.org/10.1080/02664763.2019.1675608

  19. Žežula, I., Klein, D., Roy, A.: Testing of multivariate repeated measures data with block exchangeable covariance structure. Test 27(2), 360–378 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Žežula’s and Klein’s research was supported by the Slovak Research and Development Agency under the Contract No. APVV-17-0568 and by grant VEGA MŠ SR 1/0311/18.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ivan Žežula or Daniel Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Žežula, I., Klein, D., Roy, A. (2020). Mean Value Test for Three-Level Multivariate Observations with Doubly Exchangeable Covariance Structure. In: Holgersson, T., Singull, M. (eds) Recent Developments in Multivariate and Random Matrix Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-56773-6_19

Download citation

Publish with us

Policies and ethics