Skip to main content

X-ray Image Representation

  • 805 Accesses

Abstract

In this chapter, we cover several topics that are used to represent an X-ray image (or a specific region of an X-ray image). This representation means that new features are extracted from the original image that can give us more information than the raw information expressed as a matrix of gray values. This kind of information is extracted as features or descriptors, i.e., a set of values, that can be used in pattern recognition problems such as object recognition, defect detection, etc. The chapter explains geometric and intensity features, and local descriptors and sparse representations that are very common in computer vision applications. It is worthwhile to mention, that the features mentioned in this chapter are called handcrafted features, in contrast to the learned features that are explained in Chap. 7 using deep learning techniques. Finally, the chapter addresses some feature selection techniques that can be used to chose which features are relevant in terms of extraction.

Cover image: Welding defects (from X-ray image W0001_0001, well known as BAM5, colored with ‘sinmap’ colormap).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-56769-9_5
  • Chapter length: 58 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-56769-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Hardcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.5
Fig. 5.6
Fig. 5.7
Fig. 5.8
Fig. 5.9
Fig. 5.10
Fig. 5.11
Fig. 5.12
Fig. 5.13
Fig. 5.14
Fig. 5.15
Fig. 5.16
Fig. 5.17
Fig. 5.18
Fig. 5.19
Fig. 5.20
Fig. 5.21
Fig. 5.22
Fig. 5.23
Fig. 5.24
Fig. 5.25
Fig. 5.26
Fig. 5.27
Fig. 5.28
Fig. 5.29

Notes

  1. 1.

    BSIF has been originally implemented in Matlab [27]. A Python implementation of BSIF is given at https://github.com/CVRL/OpenSourceIrisPAD that was used for iris recognition [11].

  2. 2.

    Sometimes the magnitude of the angle is used.

  3. 3.

    A good library for sparse representation in computer vision is SPAMS (SPArse Modelling Software) [34], see Matlab, Python and R implementations on http://spams-devel.gforge.inria.fr.

  4. 4.

    OMP is a greedy algorithm that iteratively selects locally optimal basis vectors [59].

  5. 5.

    In pybalu library, (5.40) is implemented in of pybalu library.

  6. 6.

    Classifiers and accuracy estimation are covered in Chap. 6.

  7. 7.

    The available names of models are (logistic regression), (Ridge function), (linear discriminant analysis), (quadratic discriminant analysis), (SVM classifier with linear kernel), (SVM classifier with RBF kernel).

  8. 8.

    Cross-validation is explained in Sect. 6.3.2.

  9. 9.

    In this example, we used an augmented version of this subset that is available in the folder . The original subset has 80 samples per class for training and 20 samples per class per testing. In the training stage of our example, the 80 samples per class are augmented to 320 per class by rotating them in \(0^0, 90^0, 180^0\), and \(270^0\). The testing samples of our examples correspond to the 20 samples per class of the original dataset (with no augmentation).

References

  1. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    CrossRef  MATH  Google Scholar 

  2. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: speeded up robust features. In: 9th European Conference on Computer Vision (ECCV2006). Graz Austria (2006)

    Google Scholar 

  3. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary robust independent elementary features. In: Computer Vision–ECCV 2010, pp. 778–792. Springer (2010)

    Google Scholar 

  4. Castleman, K.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (1996)

    Google Scholar 

  5. Chellappa, R., Bagdazian, R.: Fourier coding of image boundaries. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6(1), 102–105 (1984)

    Google Scholar 

  6. Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 252–258 (2004)

    CrossRef  Google Scholar 

  7. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. Conf. Comput. Vis. Pattern Recognit. (CVPR2005) 1, 886–893 (2005)

    Google Scholar 

  8. Danielsson, P.E.: A new shape factor. Comput. Graph. Image Process. 7, 292–299 (1978)

    CrossRef  Google Scholar 

  9. Donoho, D., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via \(\ell _1\) minimization. Proc. Natl. Acad. Sci. 100(5), 2197–2202 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Donoho, D.L.: For most large underdetermined systems of linear equations the minimal \(\ell _1\)-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59(6), 797–829 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar 

  11. Doyle, J.S., Bowyer, K.W.: Robust detection of textured contact lenses in iris recognition using bsif. IEEE Access 3, 1672–1683 (2015)

    CrossRef  Google Scholar 

  12. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, New York (2001)

    MATH  Google Scholar 

  13. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    CrossRef  MathSciNet  Google Scholar 

  14. Fitzgibbon, A., Pilu, M., Fisher, R.: Direct least square fitting ellipses. IEEE Trans. Pattern Anal. Mach. Intel. 21(5), 476–480 (1999)

    Google Scholar 

  15. Flusser, J., Suk, T.: Pattern recognition by affine moment invariants. Pattern Recognit. 26(1), 167–174 (1993)

    CrossRef  MathSciNet  Google Scholar 

  16. Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice Hall, Pearson (2008)

    Google Scholar 

  17. Gorodnitsky, I., Rao, B.: Sparse signal reconstruction from limited data using focuss: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (1997)

    CrossRef  Google Scholar 

  18. Gribonval, R., Nielsen, M.: Sparse representations in unions of bases. IEEE Trans. Inf. Theory 49(12), 3320–3325 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar 

  19. Gupta, L., Srinath, M.D.: Contour sequence moments for the classification of closed planar shapes. Pattern Recognit. 20(3), 267–272 (1987)

    CrossRef  Google Scholar 

  20. Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC-3(6), 610–621 (1973)

    Google Scholar 

  21. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  22. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Info. Theory IT(8), 179–187 (1962)

    Google Scholar 

  23. Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14(1), 55–63 (1968)

    CrossRef  Google Scholar 

  24. Jähne, B.: Digitale Bildverarbeitung, 2nd edn. Springer, Berlin (1995)

    MATH  Google Scholar 

  25. Joliffe, I.: Principal Component Analysis. Springer, New York (1986)

    CrossRef  Google Scholar 

  26. Kamm, K.F.: Grundlagen der Röntgenabbildung. In: Ewen, K. (ed.) Moderne Bildgebung: Physik, Gerätetechnik, Bildbearbeitung und -kommunikation, Strahlenschutz, Qualitätskontrolle, pp. 45–62. Georg Thieme Verlag, Stuttgart, New York (1998)

    Google Scholar 

  27. Kannala, J., Rahtu, E.: BSIF: Binarized statistical image features. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 1363–1366. IEEE (2012)

    Google Scholar 

  28. Klette, R.: Concise Computer Vision: An Introduction into Theory and Algorithms. Springer Science & Business Media (2014)

    Google Scholar 

  29. Kreutz-Delgado, K., Murray, J., Rao, B., Engan, K., Lee, T., Sejnowski, T.: Dictionary learning algorithms for sparse representation. Neural Comput. 15(2), 349–396 (2003)

    CrossRef  MATH  Google Scholar 

  30. Kumar, A., Pang, G.: Defect detection in textured materials using gabor filters. IEEE Trans. Ind. Appl. 38(2), 425–440 (2002)

    CrossRef  Google Scholar 

  31. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: Binary robust invariant scalable keypoints. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2548–2555. IEEE (2011)

    Google Scholar 

  32. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    CrossRef  Google Scholar 

  33. Mailhé, B., Lesage, S., Gribonval, R., Bimbot, F., Vandergheynst, P., et al.: Shift-invariant dictionary learning for sparse representations: extending k-svd. Proc. Eur. Signal Process. Conf. 4 (2008)

    Google Scholar 

  34. Mairal, J., Bach, F., Ponce, J.: Sparse modeling for image and vision processing. Found. Trends® Comput. Graph. Vis. 8(2-3), 85–283 (2014)

    Google Scholar 

  35. Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Trans. Image Process. 17(1), 53–69 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  36. Mao, K.: Identifying critical variables of principal components for unsupervised feature selection. IEEE Trans. Syst. Man Cybern. Part B: Cybern.35(2), 339–344 (2005)

    Google Scholar 

  37. MathWorks: Matlab Toolbox of Bioinformatics: User’s Guide. Mathworks Inc. (2007)

    Google Scholar 

  38. MathWorks: Image Processing Toolbox for Use with MATLAB: User’s Guide. The MathWorks Inc. (2014)

    Google Scholar 

  39. Mery, D.: Crossing line profile: a new approach to detecting defects in aluminium castings. Proceedings of the Scandinavian Conference on Image Analysis (SCIA 2003), Lecture Notes in Computer Science vol. 2749, pp. 725–732 (2003)

    Google Scholar 

  40. Mery, D., Filbert, D.: Automated flaw detection in aluminum castings based on the tracking of potential defects in a radioscopic image sequence. IEEE Trans. Robot. Autom. 18(6), 890–901 (2002)

    CrossRef  Google Scholar 

  41. Mery, D., Filbert, D.: Classification of potential defects in automated inspection of aluminium castings using statistical pattern recognition. In: 8\(^{th}\) European Conference on Non-Destructive Testing (ECNDT 2002), pp. 1–10. Barcelona (2002)

    Google Scholar 

  42. Mery, D., Filbert, D., Jaeger, T.: Image processing for fault detection in aluminum castings. In: MacKenzie, D., Totten, G. (eds.) Analytical Characterization of Aluminum and Its Alloys. Marcel Dekker, New York (2003)

    Google Scholar 

  43. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intel. 27(10), 1615–1630 (2005)

    CrossRef  Google Scholar 

  44. Mu, Y., Yan, S., Liu, Y., Huang, T., Zhou, B.: Discriminative local binary patterns for human detection in personal album. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008), pp. 1–8 (2008)

    Google Scholar 

  45. Narendra, P.M., Fukunaga, K.: A branch and bound algorithm for feature subset selection. IEEE Trans. Comput. C-26(9), 917–922 (1977)

    Google Scholar 

  46. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intel. 24(7), 971–987 (2002)

    CrossRef  MATH  Google Scholar 

  47. Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. In: Image and signal processing, pp. 236–243. Springer (2008)

    Google Scholar 

  48. Olshausen, B., Field, D.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)

    CrossRef  Google Scholar 

  49. Olshausen, B., Field, D.: Sparse coding with an overcomplete basis set: a strategy employed by v1? Vis. Res. 37(23), 3311–3325 (1997)

    CrossRef  Google Scholar 

  50. Olshausen, B., Field, D.: Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14(4), 481–487 (2004)

    CrossRef  Google Scholar 

  51. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intel. 27(8), 1226–1238 (2005)

    CrossRef  Google Scholar 

  52. Persoon, E., Fu, K.: Shape discrimination using Fourier descriptors. IEEE Trans. Syst. Man Cybern. SMC-7(3), 170–179 (1977)

    Google Scholar 

  53. Randen, T., Husoy, J.: Filtering for texture classification: a comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 291–310 (1999)

    CrossRef  Google Scholar 

  54. Rubinstein, R., Bruckstein, A., Elad, M.: Dictionaries for sparse representation modeling. Proc. IEEE 98(6), 1045–1057 (2010)

    CrossRef  Google Scholar 

  55. Rubinstein, R., Zibulevsky, M., Elad, M.: Double sparsity: learning sparse dictionaries for sparse signal approximation. IEEE Trans.Signal Process. 58(3), 1553–1564 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  56. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision, 2nd edn. PWS Publishing, Pacific Grove (1998)

    Google Scholar 

  57. Teh, C., Chin, R.: On digital approximation of moment invariants. Comput. Vis. Graph. Image Process. 33(3), 318–326 (1986)

    CrossRef  Google Scholar 

  58. Tosic, I., Frossard, P.: Dictionary learning. Signal Process. Mag. IEEE 28(2), 27–38 (2011)

    CrossRef  MATH  Google Scholar 

  59. Tropp, J.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar 

  60. Wei, H.L., Billings, S.: Feature subset selection and ranking for data dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 162–166 (2007)

    CrossRef  Google Scholar 

  61. Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T., Yan, S.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)

    CrossRef  Google Scholar 

  62. Yaghoobi, M., Blumensath, T., Davies, M.: Dictionary learning for sparse approximations with the majorization method. IEEE Trans. Signal Process. 57(6), 2178–2191 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  63. Yang, A., Gastpar, M., Bajcsy, R., Sastry, S.: Distributed sensor perception via sparse representation. Proc. IEEE 98(6), 1077–1088 (2010)

    CrossRef  Google Scholar 

  64. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 1794–1801 (2009)

    Google Scholar 

  65. Zahn, C., Roskies, R.: Fourier descriptors for plane closed curves. IEEE Trans. Comput. C-21(3), 269–281 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domingo Mery .

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Mery, D., Pieringer, C. (2021). X-ray Image Representation. In: Computer Vision for X-Ray Testing. Springer, Cham. https://doi.org/10.1007/978-3-030-56769-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56769-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56768-2

  • Online ISBN: 978-3-030-56769-9

  • eBook Packages: Computer ScienceComputer Science (R0)