Abstract
In this chapter, we cover several topics that are used to represent an X-ray image (or a specific region of an X-ray image). This representation means that new features are extracted from the original image that can give us more information than the raw information expressed as a matrix of gray values. This kind of information is extracted as features or descriptors, i.e., a set of values, that can be used in pattern recognition problems such as object recognition, defect detection, etc. The chapter explains geometric and intensity features, and local descriptors and sparse representations that are very common in computer vision applications. It is worthwhile to mention, that the features mentioned in this chapter are called handcrafted features, in contrast to the learned features that are explained in Chap. 7 using deep learning techniques. Finally, the chapter addresses some feature selection techniques that can be used to chose which features are relevant in terms of extraction.
Cover image: Welding defects (from X-ray image W0001_0001, well known as BAM5, colored with ‘sinmap’ colormap).
This is a preview of subscription content, access via your institution.
Buying options





























Notes
- 1.
BSIF has been originally implemented in Matlab [27]. A Python implementation of BSIF is given at https://github.com/CVRL/OpenSourceIrisPAD that was used for iris recognition [11].
- 2.
Sometimes the magnitude of the angle is used.
- 3.
A good library for sparse representation in computer vision is SPAMS (SPArse Modelling Software) [34], see Matlab, Python and R implementations on http://spams-devel.gforge.inria.fr.
- 4.
OMP is a greedy algorithm that iteratively selects locally optimal basis vectors [59].
- 5.
In pybalu library, (5.40) is implemented in
of pybalu library.
- 6.
Classifiers and accuracy estimation are covered in Chap. 6.
- 7.
The available names of models are
(logistic regression),
(Ridge function),
(linear discriminant analysis),
(quadratic discriminant analysis),
(SVM classifier with linear kernel),
(SVM classifier with RBF kernel).
- 8.
Cross-validation is explained in Sect. 6.3.2.
- 9.
In this example, we used an augmented version of this subset that is available in the folder
. The original subset has 80 samples per class for training and 20 samples per class per testing. In the training stage of our example, the 80 samples per class are augmented to 320 per class by rotating them in \(0^0, 90^0, 180^0\), and \(270^0\). The testing samples of our examples correspond to the 20 samples per class of the original dataset (with no augmentation).
References
Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)
Bay, H., Tuytelaars, T., Van Gool, L.: Surf: speeded up robust features. In: 9th European Conference on Computer Vision (ECCV2006). Graz Austria (2006)
Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary robust independent elementary features. In: Computer Vision–ECCV 2010, pp. 778–792. Springer (2010)
Castleman, K.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (1996)
Chellappa, R., Bagdazian, R.: Fourier coding of image boundaries. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6(1), 102–105 (1984)
Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 252–258 (2004)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. Conf. Comput. Vis. Pattern Recognit. (CVPR2005) 1, 886–893 (2005)
Danielsson, P.E.: A new shape factor. Comput. Graph. Image Process. 7, 292–299 (1978)
Donoho, D., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via \(\ell _1\) minimization. Proc. Natl. Acad. Sci. 100(5), 2197–2202 (2003)
Donoho, D.L.: For most large underdetermined systems of linear equations the minimal \(\ell _1\)-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59(6), 797–829 (2006)
Doyle, J.S., Bowyer, K.W.: Robust detection of textured contact lenses in iris recognition using bsif. IEEE Access 3, 1672–1683 (2015)
Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, New York (2001)
Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)
Fitzgibbon, A., Pilu, M., Fisher, R.: Direct least square fitting ellipses. IEEE Trans. Pattern Anal. Mach. Intel. 21(5), 476–480 (1999)
Flusser, J., Suk, T.: Pattern recognition by affine moment invariants. Pattern Recognit. 26(1), 167–174 (1993)
Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice Hall, Pearson (2008)
Gorodnitsky, I., Rao, B.: Sparse signal reconstruction from limited data using focuss: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (1997)
Gribonval, R., Nielsen, M.: Sparse representations in unions of bases. IEEE Trans. Inf. Theory 49(12), 3320–3325 (2003)
Gupta, L., Srinath, M.D.: Contour sequence moments for the classification of closed planar shapes. Pattern Recognit. 20(3), 267–272 (1987)
Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC-3(6), 610–621 (1973)
Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)
Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Info. Theory IT(8), 179–187 (1962)
Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14(1), 55–63 (1968)
Jähne, B.: Digitale Bildverarbeitung, 2nd edn. Springer, Berlin (1995)
Joliffe, I.: Principal Component Analysis. Springer, New York (1986)
Kamm, K.F.: Grundlagen der Röntgenabbildung. In: Ewen, K. (ed.) Moderne Bildgebung: Physik, Gerätetechnik, Bildbearbeitung und -kommunikation, Strahlenschutz, Qualitätskontrolle, pp. 45–62. Georg Thieme Verlag, Stuttgart, New York (1998)
Kannala, J., Rahtu, E.: BSIF: Binarized statistical image features. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 1363–1366. IEEE (2012)
Klette, R.: Concise Computer Vision: An Introduction into Theory and Algorithms. Springer Science & Business Media (2014)
Kreutz-Delgado, K., Murray, J., Rao, B., Engan, K., Lee, T., Sejnowski, T.: Dictionary learning algorithms for sparse representation. Neural Comput. 15(2), 349–396 (2003)
Kumar, A., Pang, G.: Defect detection in textured materials using gabor filters. IEEE Trans. Ind. Appl. 38(2), 425–440 (2002)
Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: Binary robust invariant scalable keypoints. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2548–2555. IEEE (2011)
Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Mailhé, B., Lesage, S., Gribonval, R., Bimbot, F., Vandergheynst, P., et al.: Shift-invariant dictionary learning for sparse representations: extending k-svd. Proc. Eur. Signal Process. Conf. 4 (2008)
Mairal, J., Bach, F., Ponce, J.: Sparse modeling for image and vision processing. Found. Trends® Comput. Graph. Vis. 8(2-3), 85–283 (2014)
Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Trans. Image Process. 17(1), 53–69 (2008)
Mao, K.: Identifying critical variables of principal components for unsupervised feature selection. IEEE Trans. Syst. Man Cybern. Part B: Cybern.35(2), 339–344 (2005)
MathWorks: Matlab Toolbox of Bioinformatics: User’s Guide. Mathworks Inc. (2007)
MathWorks: Image Processing Toolbox for Use with MATLAB: User’s Guide. The MathWorks Inc. (2014)
Mery, D.: Crossing line profile: a new approach to detecting defects in aluminium castings. Proceedings of the Scandinavian Conference on Image Analysis (SCIA 2003), Lecture Notes in Computer Science vol. 2749, pp. 725–732 (2003)
Mery, D., Filbert, D.: Automated flaw detection in aluminum castings based on the tracking of potential defects in a radioscopic image sequence. IEEE Trans. Robot. Autom. 18(6), 890–901 (2002)
Mery, D., Filbert, D.: Classification of potential defects in automated inspection of aluminium castings using statistical pattern recognition. In: 8\(^{th}\) European Conference on Non-Destructive Testing (ECNDT 2002), pp. 1–10. Barcelona (2002)
Mery, D., Filbert, D., Jaeger, T.: Image processing for fault detection in aluminum castings. In: MacKenzie, D., Totten, G. (eds.) Analytical Characterization of Aluminum and Its Alloys. Marcel Dekker, New York (2003)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intel. 27(10), 1615–1630 (2005)
Mu, Y., Yan, S., Liu, Y., Huang, T., Zhou, B.: Discriminative local binary patterns for human detection in personal album. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008), pp. 1–8 (2008)
Narendra, P.M., Fukunaga, K.: A branch and bound algorithm for feature subset selection. IEEE Trans. Comput. C-26(9), 917–922 (1977)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intel. 24(7), 971–987 (2002)
Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. In: Image and signal processing, pp. 236–243. Springer (2008)
Olshausen, B., Field, D.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)
Olshausen, B., Field, D.: Sparse coding with an overcomplete basis set: a strategy employed by v1? Vis. Res. 37(23), 3311–3325 (1997)
Olshausen, B., Field, D.: Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14(4), 481–487 (2004)
Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intel. 27(8), 1226–1238 (2005)
Persoon, E., Fu, K.: Shape discrimination using Fourier descriptors. IEEE Trans. Syst. Man Cybern. SMC-7(3), 170–179 (1977)
Randen, T., Husoy, J.: Filtering for texture classification: a comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 291–310 (1999)
Rubinstein, R., Bruckstein, A., Elad, M.: Dictionaries for sparse representation modeling. Proc. IEEE 98(6), 1045–1057 (2010)
Rubinstein, R., Zibulevsky, M., Elad, M.: Double sparsity: learning sparse dictionaries for sparse signal approximation. IEEE Trans.Signal Process. 58(3), 1553–1564 (2010)
Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision, 2nd edn. PWS Publishing, Pacific Grove (1998)
Teh, C., Chin, R.: On digital approximation of moment invariants. Comput. Vis. Graph. Image Process. 33(3), 318–326 (1986)
Tosic, I., Frossard, P.: Dictionary learning. Signal Process. Mag. IEEE 28(2), 27–38 (2011)
Tropp, J.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004)
Wei, H.L., Billings, S.: Feature subset selection and ranking for data dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 162–166 (2007)
Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T., Yan, S.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)
Yaghoobi, M., Blumensath, T., Davies, M.: Dictionary learning for sparse approximations with the majorization method. IEEE Trans. Signal Process. 57(6), 2178–2191 (2009)
Yang, A., Gastpar, M., Bajcsy, R., Sastry, S.: Distributed sensor perception via sparse representation. Proc. IEEE 98(6), 1077–1088 (2010)
Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 1794–1801 (2009)
Zahn, C., Roskies, R.: Fourier descriptors for plane closed curves. IEEE Trans. Comput. C-21(3), 269–281 (1971)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Mery, D., Pieringer, C. (2021). X-ray Image Representation. In: Computer Vision for X-Ray Testing. Springer, Cham. https://doi.org/10.1007/978-3-030-56769-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-56769-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-56768-2
Online ISBN: 978-3-030-56769-9
eBook Packages: Computer ScienceComputer Science (R0)