Skip to main content

Local Spectra of Adaptive Domain Decomposition Methods

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 138)

Abstract

For second order elliptic partial differential equations, such as diffusion or elasticity, with arbitrary and high coefficient jumps, the convergence rate of domain decomposition methods with classical coarse spaces typically deteriorates. One remedy is the use of adaptive coarse spaces, which use eigenfunctions computed from local generalized eigenvalue problems to enrich the standard coarse space; see, e.g., [19, 6, 5, 4, 22, 23, 3, 16, 17, 14, 7, 8, 24, 1, 20, 2, 13, 21, 10, 9, 11]. This typically results in a condition number estimate of the form

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-56750-7_18
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-56750-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Heinlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Heinlein, A., Klawonn, A., Kühn, M.J. (2020). Local Spectra of Adaptive Domain Decomposition Methods. In: , et al. Domain Decomposition Methods in Science and Engineering XXV. DD 2018. Lecture Notes in Computational Science and Engineering, vol 138. Springer, Cham. https://doi.org/10.1007/978-3-030-56750-7_18

Download citation