Skip to main content

Abstract

To retrieve light and reflectance information from the real world, a wide variety of sensors have been developed for specific purposes. Among them, the RGB camera, which is the most similar to the human eye, is the most important. The analog camera was invented more than 100 years ago, and the film was recently replaced by digital imaging devices, (e.g., CCD or complementary metal oxide semiconductor (CMOS)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nayar SK, Mitsunaga T (2000) High dynamic range imaging: Spatially varying pixel exposures. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), vol 1. IEEE, pp 472–479

    Google Scholar 

  2. Fukuda T, Kimachi A, Tominaga S (2008) A high-resolution imaging system for omnidirectional illuminant estimation. J Imaging Sci Technol 52(4):40907-1

    Google Scholar 

  3. Schechner YY, Nayar SK (2002) Generalized mosaicing: wide field of view multispectral imaging. IEEE Trans Pattern Anal Mach Intell (PAMI) 24(10):1334–1348

    Article  Google Scholar 

  4. Schechner YY (2015) Self-calibrating imaging polarimetry. In: 2015 IEEE international conference on computational photography (ICCP). IEEE, pp 1–10

    Google Scholar 

  5. Wang Z, Zheng Y, Chuang YY (2019) Polarimetric camera calibration using an LCD monitor. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 3743–3752

    Google Scholar 

  6. Wolff LB, Mancini TA, Pouliquen P, Andreou AG (1997) Liquid crystal polarization camera. IEEE Trans Robot Autom 13(2):195–203

    Article  Google Scholar 

  7. Fujikake H, Takizawa K, Aida T, Kikuchi H, Fujii T, Kawakita M (1998) Electrically-controllable liquid crystal polarizing filter for eliminating reflected light. Opt Rev 5(2):93–98

    Article  Google Scholar 

  8. Harnett CK, Craighead HG (2002) Liquid-crystal micropolarizer array for polarization-difference imaging. Appl Opt 41(7):1291–1296

    Article  Google Scholar 

  9. Miyazaki D, Takashima N, Yoshida A, Harashima E, Ikeuchi K (2005) Polarization-based shape estimation of transparent objects by using raytracing and plzt camera. In: Polarization science and remote sensing II, vol 5888. International society for optics and photonics, p 588801

    Google Scholar 

  10. Yamazaki T, Maruyama Y, Uesaka Y, Nakamura M, Matoba Y, Terada T, Komori K, Ohba Y, Arakawa S, Hirasawa Y et al (2016) Four-directional pixel-wise polarization cmos image sensor using air-gap wire grid on 2.5-\(\upmu \)m back-illuminated pixels. In: 2016 IEEE international electron devices meeting (IEDM). IEEE, pp 8-7

    Google Scholar 

  11. Michelson AA, Morley EW (1887) On the relative motion of the earth and of the luminiferous ether. In: Sidereal messenger, vol 6, pp 306–310

    Google Scholar 

  12. Phong BT (1975) Illumination for computer generated pictures. Commun ACM 18(6):311–317

    Article  Google Scholar 

  13. Stanford Graphics Lab (2002) Stanford spherical gantry. https://graphics.stanford.edu/projects/gantry/

  14. Nayar SK, Sanderson AC, Weiss LE, Simon DA (1990) Specular surface inspection using structured highlight and gaussian images. IEEE Trans Robot Autom 6(2):208–218

    Article  Google Scholar 

  15. Furukawa R, Kawasaki H, Ikeuchi K, Sakauchi M (2002) Appearance based object modeling using texture database: acquisition compression and rendering. In: Rendering techniques, pp 257–266

    Google Scholar 

  16. Mukaigawa Y, Sumino K, Yagi Y (2009) Rapid brdf measurement using an ellipsoidal mirror and a projector. IPSJ Trans Comput Vis Appl 1:21–32. https://doi.org/10.2197/ipsjtcva.1.21

    Article  Google Scholar 

  17. Ben-Ezra M, Wang J, Wilburn B, Li X, Ma L (2008) An led-only BRDF measurement device. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsushi Ikeuchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ikeuchi, K. et al. (2020). Sensor. In: Active Lighting and Its Application for Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-56577-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56577-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56576-3

  • Online ISBN: 978-3-030-56577-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics