Skip to main content

Abstract

A common objective for using active-lighting techniques is to measure 3D geometric properties (e.g., shapes, positions, normals) of real scenes. Thus, 3D geometrical modeling of 3D scenes and measurement devices (e.g., cameras, laser sources, video projectors) are crucially important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bradski G (2000) The openCV library. Dr. Dobb’s J Softw Tools

    Google Scholar 

  2. Brown DC (1966) Decentering distortion of lenses. Photogramm Eng Remote Sens

    Google Scholar 

  3. Conrady AE (1919) Decentred lens-systems. Monthly Not R Astron Soc 79(5):384–390

    Article  Google Scholar 

  4. Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell (PAMI) 22

    Google Scholar 

  5. Zhang S, Huang PS (2006) Novel method for structured light system calibration. Opt Eng 45(8):083601

    Article  Google Scholar 

  6. Li Z, Shi Y, Wang C, Wang Y (2008) Accurate calibration method for a structured light system. Opt Eng 47(5):053604

    Article  Google Scholar 

  7. Moreno D, Taubin G (2012) Simple, accurate, and robust projector-camera calibration. In: 2012 second international conference on 3D imaging, modeling, processing, visualization & transmission. IEEE, pp 464–471

    Google Scholar 

  8. Sadlo F, Weyrich T, Peikert R, Gross M (2005) A practical structured light acquisition system for point-based geometry and texture. In: Proceedings Eurographics/IEEE VGTC symposium point-based graphics. IEEE, pp 89–145

    Google Scholar 

  9. Liao J, Cai L (2008) A calibration method for uncoupling projector and camera of a structured light system. In: 2008 IEEE/ASME international conference on advanced intelligent mechatronics. IEEE, pp 770–774

    Google Scholar 

  10. Yamauchi K, Saito H, Sato Y (2008) Calibration of a structured light system by observing planar object from unknown viewpoints. In: Proceedings of the international conference on pattern recognition (ICPR). IEEE, pp 1–4

    Google Scholar 

  11. Wei G, Liang W, Zhan-Yi H (2008) Flexible calibration of a portable structured light system through surface plane. Acta Autom Sin 34(11):1358–1362

    Google Scholar 

  12. Audet S, Okutomi M (2009) A user-friendly method to geometrically calibrate projector-camera systems. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) workshops. IEEE, pp 47–54

    Google Scholar 

  13. Falcao G, Hurtos N, Massich J, Fofi D (2009) Projector-camera calibration toolbox. Erasumus Mundus masters in vision and robotics

    Google Scholar 

  14. Anwar H, Din I, Park K (2012) Projector calibration for 3d scanning using virtual target images. Int J Precis Eng Manuf 13(1):125–131

    Article  Google Scholar 

  15. Zhang X, Zhang Z, Cheng W (2015) Iterative projector calibration using multi-frequency phase-shifting method. In: 2015 IEEE 7th international conference on cybernetics and intelligent systems (CIS) and IEEE conference on robotics, automation and mechatronics (RAM). IEEE, pp 1–6

    Google Scholar 

  16. Yamazaki S, Mochimaru M, Kanade T (2011) Simultaneous self-calibration of a projector and a camera using structured light. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) workshops. IEEE, pp 60–67

    Google Scholar 

  17. Shahpaski M, Ricardo Sapaico L, Chevassus G, Susstrunk S (2017) Simultaneous geometric and radiometric calibration of a projector-camera pair. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 4885–4893

    Google Scholar 

  18. Okatani T, Deguchi K (2005) Autocalibration of a projector-camera system. IEEE Trans Pattern Anal Mach Intell (PAMI) 27(12):1845–1855

    Article  Google Scholar 

  19. Draréni J, Roy S, Sturm P (2009) Geometric video projector auto-calibration. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) workshops. IEEE, pp 39–46

    Google Scholar 

  20. Furukawa R, Masutani R, Miyazaki D, Baba M, Hiura S, Visentini-Scarzanella M, Morinaga H, Kawasaki H, Sagawa R (2015) 2-dof auto-calibration for a 3d endoscope system based on active stereo. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 7937–7941

    Google Scholar 

  21. Furukawa R, Kawasaki H (2005) Uncalibrated multiple image stereo system with arbitrarily movable camera and projector for wide range scanning. In: Fifth international conference on 3-D digital imaging and modeling (3DIM’05). IEEE, pp 302–309

    Google Scholar 

  22. Albarelli A, Cosmo L, Bergamasco F, Torsello A (2014) High-coverage 3d scanning through online structured light calibration. In: Proceedings of the international conference on pattern recognition (ICPR). IEEE, pp 4080–4085

    Google Scholar 

  23. Fleischmann O, Koch R (2016) Fast projector-camera calibration for interactive projection mapping. In: Proceedings of the international conference on pattern recognition (ICPR). IEEE, pp 3798–3803

    Google Scholar 

  24. Li C, Monno Y, Hidaka H, Okutomi M (2019) Pro-cam ssfm: Projector-camera system for structure and spectral reflectance from motion. In: Proceedings of the international conference on computer vision (ICCV), pp 2414–2423

    Google Scholar 

  25. Furuakwa R, Inose K, Kawasaki H (2009) Multi-view reconstruction for projector camera systems based on bundle adjustment. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) workshops. IEEE, pp 69–76

    Google Scholar 

  26. Furukawa R, Sagawa R, Kawasaki H, Sakashita K, Yagi Y, Asada N (2010) One-shot entire shape acquisition method using multiple projectors and cameras. In: Pacific-rim symposium on image and video technology (PSVIT). IEEE, pp 107–114

    Google Scholar 

  27. Kasuya N, Sagawa R, Furukawa R, Kawasaki H (2013) One-shot entire shape scanning by utilizing multiple projector-camera constraints of grid patterns. In: Proceedings of the international conference on computer vision (ICCV) workshops, pp 299–306

    Google Scholar 

  28. Willi S, Grundhöfer A (2017) Robust geometric self-calibration of generic multi-projector camera systems. In: 2017 IEEE international symposium on mixed and augmented reality (ISMAR). IEEE, pp 42–51

    Google Scholar 

  29. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis (IJCV) 60(2):91–110

    Article  Google Scholar 

  30. Rublee E, Rabaud V, Konolige K, Bradski G (2011) Orb: an efficient alternative to sift or surf. In: Proceedings of the international conference on computer vision (ICCV). IEEE, pp 2564–2571

    Google Scholar 

  31. Lourakis MI, Argyros AA (2009) Sba: a software package for generic sparse bundle adjustment. ACM Trans Math Softw (TOMS) 36(1):1–30

    Article  MathSciNet  Google Scholar 

  32. Batlle J, Mouaddib E, Salvi J (1998) Recent progress in coded structured light as a technique to solve the correspondence problem: a survey. Pattern Recogn 31(7):963–982

    Article  Google Scholar 

  33. Inokuchi S (1984) Range imaging system for 3-d object recognition. In: Proceedings of the international conference on pattern recognition (ICPR), pp 806–808

    Google Scholar 

  34. Caspi D, Kiryati N, Shamir J (1998) Range imaging with adaptive color structured light. IEEE Trans Pattern Anal Mach Intell (PAMI) 20(5):470–480

    Article  Google Scholar 

  35. Boyer KL, Kak AC (1987) Color-encoded structured light for rapid active ranging. IEEE Trans Pattern Anal Mach Intell (PAMI) 1:14–28

    Article  Google Scholar 

  36. Abdul-Rahman HS, Gdeisat MA, Burton DR, Lalor MJ, Lilley F, Moore CJ (2007) Fast and robust three-dimensional best path phase unwrapping algorithm. Appl Opt 46(26):6623–6635

    Article  Google Scholar 

  37. Ghiglia DC, Pritt MD (1998) Two-dimensional phase unwrapping: theory, algorithms, and software, vol 4. Wiley, New York

    MATH  Google Scholar 

  38. Sato K (1987) Range imaging system utilizing nematic liquid crystal mask. In: Proceedings of the international conference on computer vision (ICCV), pp 657–661

    Google Scholar 

  39. Gühring J (2000) Dense 3d surface acquisition by structured light using off-the-shelf components. In: Videometrics and optical methods for 3D shape measurement, vol 4309. International Society for Optics and Photonics, pp 220–231

    Google Scholar 

  40. Zhao H, Chen W, Tan Y (1994) Phase-unwrapping algorithm for the measurement of three-dimensional object shapes. Appl Opt 33(20):4497–4500

    Article  Google Scholar 

  41. Sagawa R, Kawasaki H, Kiyota S, Furukawa R (2011) Dense one-shot 3d reconstruction by detecting continuous regions with parallel line projection. In: Proceedings of the international conference on computer vision (ICCV). IEEE, pp 1911–1918

    Google Scholar 

  42. Je C, Lee SW, Park RH (2004) High-contrast color-stripe pattern for rapid structured-light range imaging. In: Proceedings of the European conference on computer vision (ECCV). Springer, pp 95–107

    Google Scholar 

  43. Tajima J, Iwakawa M (1990) 3-d data acquisition by rainbow range finder. In: Proceedings of the international conference on pattern recognition (ICPR), vol 1. IEEE, pp 309–313

    Google Scholar 

  44. Pan J, Huang PS, Chiang FP (2005) Color-coded binary fringe projection technique for 3-d shape measurement. Opt Eng 44(2):023606

    Article  Google Scholar 

  45. Salvi J, Batlle J, Mouaddib E (1998) A robust-coded pattern projection for dynamic 3d scene measurement. Pattern Recogn Lett 19(11):1055–1065

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsushi Ikeuchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ikeuchi, K. et al. (2020). Geometry. In: Active Lighting and Its Application for Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-56577-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56577-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56576-3

  • Online ISBN: 978-3-030-56577-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics