Skip to main content

Abstract

For medical diagnoses and treatments, basic and clear information, including heart rate, blood pressure, X-ray imagery, etc., of a subject is essential. Thus, a huge amount of sensing technologies have been researched, developed, and commercialized. Among the wide variety of available sensors (e.g., electromagnetic (i.e., MRI), radiation- based (i.e., X-ray), and ultrasound), active-lighting-based techniques have recently drawn a great deal of attention because of their noninvasive methods and simple configurations. In this chapter, a 3D endoscope system using structured light and a noncontact heartbeat detection system is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Okatani T, Deguchi K (1997) Shape reconstruction from an endoscope image by shape from shading technique for a point light source at the projection center. Comput Vis Image Underst J (CVIU) 66(2):119–131

    Article  Google Scholar 

  2. Wu C, Narasimhan SG, Jaramaz B (2010) A multi-image shape-from-shading framework for near-lighting perspective endoscopes. Int J Comput Vis (IJCV) 86(2–3):211–228

    Article  MathSciNet  Google Scholar 

  3. Ciuti G, Visentini-Scarzanella M, Dore A, Menciassi A, Dario P, Yang GZ (2012) Intra-operative monocular 3d reconstruction for image-guided navigation in active locomotion capsule endoscopy. In: 2012 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob). IEEE, pp 768–774

    Google Scholar 

  4. Stoyanov D, Scarzanella MV, Pratt P, Yang GZ (2010) Real-time stereo reconstruction in robotically assisted minimally invasive surgery. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 275–282

    Google Scholar 

  5. Visentini-Scarzanella M, Hanayama T, Masutani R, Yoshida S, Kominami Y, Sanomura Y, Tanaka S, Furukawa R, Kawasaki H (2015) Tissue shape acquisition with a hybrid structured light and photometric stereo endoscopic system. In: Computer-assisted and robotic endoscopy. Springer, pp 46–58

    Google Scholar 

  6. Grasa OG, Bernal E, Casado S, Gil I, Montiel J (2013) Visual slam for handheld monocular endoscope. IEEE Trans Med Imaging 33(1):135–146

    Article  Google Scholar 

  7. Aoki H, Furukawa R, Aoyama M, Hiura S, Asada N, Sagawa R, Kawasaki H, Tanaka S, Yoshida S, Sanomura Y (2013) Proposal on 3-d endoscope by using grid-based active stereo. In: 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 5694–5697

    Google Scholar 

  8. Furukawa R, Aoyama M, Hiura S, Aoki H, Kominami Y, Sanomura Y, Yoshida S, Tanaka S, Sagawa R, Kawasaki H (2014) Calibration of a 3d endoscopic system based on active stereo method for shape measurement of biological tissues and specimen. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society. IEEE, pp 4991–4994

    Google Scholar 

  9. Furukawa R, Masutani R, Miyazaki D, Baba M, Hiura S, Visentini-Scarzanella M, Morinaga H, Kawasaki H, Sagawa R (2015) 2-dof auto-calibration for a 3d endoscope system based on active stereo. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 7937–7941

    Google Scholar 

  10. Furukawa R, Sanomura Y, Tanaka S, Yoshida S, Sagawa R, Visentini-Scarzanella M, Kawasaki H (2016) 3d endoscope system using doe projector. In: 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 2091–2094

    Google Scholar 

  11. Furukawa R, Naito M, Miyazaki D, Baba M, Hiura S, Kawasaki H (2017) HDR image synthesis technique for active stereo 3d endoscope system. The 39th EMBC, pp 1–4

    Google Scholar 

  12. Sagawa R, Kawasaki H, Kiyota S, Furukawa R (2011) Dense one-shot 3d reconstruction by detecting continuous regions with parallel line projection. In: Proceedings of the international conference on computer vision (ICCV). IEEE, pp 1911–1918

    Google Scholar 

  13. Sagawa R, Sakashita K, Kasuya N, Kawasaki H, Furukawa R, Yagi Y (2012) Grid-based active stereo with single-colored wave pattern for dense one-shot 3d scan. In: 2012 second international conference on 3D imaging, modeling, processing, visualization & transmission. IEEE, pp 363–370

    Google Scholar 

  14. Kawasaki H, Furukawa R, Sagawa R, Yagi Y (2008) Dynamic scene shape reconstruction using a single structured light pattern. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1–8

    Google Scholar 

  15. Furukawa R, Morinaga H, Sanomura Y, Tanaka S, Yoshida S, Kawasaki H (2016) Shape acquisition and registration for 3d endoscope based on grid pattern projection. In: Proceedings of the European conference on computer vision (ECCV). Springer, pp 399–415

    Google Scholar 

  16. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241

    Google Scholar 

  17. Inokuchi S (1984) Range imaging system for 3-d object recognition. In: Proceedings of the international conference on pattern recognition (ICPR), pp 806–808

    Google Scholar 

  18. Newcombe RA, Izadi S, Hilliges O, Molyneaux D, Kim D, Davison AJ, Kohi P, Shotton J, Hodges S, Fitzgibbon A (2011) Kinectfusion: real-time dense surface mapping and tracking. In: 2011 10th IEEE international symposium on mixed and augmented reality. IEEE, pp 127–136

    Google Scholar 

  19. Poh MZ, McDuff DJ, Picard RW (2010) Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Trans Biomed Eng 58(1):7–11

    Article  Google Scholar 

  20. Rahman H, Ahmed MU, Begum S, Funk P (2016) Real time heart rate monitoring from facial RGB color video using webcam. In: The 29th annual workshop of the swedish artificial intelligence society. http://www.es.mdh.se/publications/4354-

  21. Aoki H, Furukawa R, Aoyama M, Hiura S, Asada N, Sagawa R, Kawasaki H, Shiga T, Suzuki A (2013) Noncontact measurement of cardiac beat by using active stereo with waved-grid pattern projection. In: 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 1756–1759

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsushi Ikeuchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ikeuchi, K. et al. (2020). Biomedical Application. In: Active Lighting and Its Application for Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-56577-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56577-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56576-3

  • Online ISBN: 978-3-030-56577-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics