Skip to main content

Disorder of Systemic Inflammation in Sepsis and Trauma: A Systems Perspective

  • Chapter
  • First Online:
Complex Systems and Computational Biology Approaches to Acute Inflammation

Abstract

The inflammatory response is highly integrated and involves regulatory elements released from the cells of the immune system, humoral factors, the endothelium, and endogenous danger signals. Once activated, the goals of the inflammatory response are to activate the cellular immune response in order to ward off penetrating pathogens and to initiate tissue repair mechanisms. The magnitude of the systemic response is proportional to the severity of the initial insult on the background of the genetic milieu of the individual. The inflammatory response is closely regulated, and a counter-anti-inflammatory response keeps it in check. When excessive or sustained, this immunoinflammatory response gives way to prolonged immunosuppression, leaving the individual susceptible to nosocomial infections and prolonged intensive care unit (ICU) stay. Only by understanding how the immunoinflammatory response becomes disordered can we devise strategies to limit the deleterious consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

Antigen-presenting cell

AR:

Adrenergic receptors

AT:

Antithrombin

BLyS:

B-lymphocyte stimulator

Breg:

Regulatory B cell

CLP:

Cecal ligation and puncture

CLR:

C-type lectin receptor

COX2:

Cyclooxygenase-2

CRH:

Corticotropin-releasing hormone

CTL:

Cytotoxic T cells

DAMP:

Damage-associated molecular pattern

DC:

Dendritic cell

DNA:

Deoxyribonucleic acid

GM-CSF:

Granulocyte-macrophage colony stimulating factor

GPCR:

G-protein-coupled receptors

HIF-1:

Hypoxia inducible factor-1

HMGB1:

High-mobility group box 1

ICAM1:

Intercellular adhesion molecule-1

ICU:

Intensive care unit

IFN:

Interferon

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

LPS:

Lipopolysaccharide

MAC:

Membrane attack complex

MAPK:

Mitogen-activated protein kinase

MCP-1:

Macrophage chemoattractant protein-1

MDSC:

Myeloid-derived suppressor cell

MHC I:

Major histocompatibility class I

MHC II:

Major histocompatibility class II

MIG:

Monokine induced by gamma interferon

MIP-1α:

Macrophage inflammatory protein-1 alpha

MODS:

Multiple organ dysfunction syndrome

MyD88:

Myeloid differentiation primary response gene 88

NADPH:

Nicotinic adenine dinucleotide phosphate

NET:

Neutrophil extracellular trap

NF-κB:

Nuclear factor kappa B

NK:

Natural killer

NKT:

Natural killer T

NLR:

NOD-like receptors

NO:

Nitric oxide

PAMP:

Pathogen-associated molecular pattern

PGI2:

Prostaglandin I2

PGN:

Peptidoglycan

PHD-2:

Proline-hydroxylase-2

PMN:

Polymorphonuclear neutrophils

PRR:

Pattern-recognition receptor

RAGE:

Receptor for advanced glycation end products

RANTES:

Regulated on activation normal T cell expressed and secreted

RCT:

Randomized, placebo-controlled clinical trial

RLR:

RIG-I like receptors

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SIRS:

Systemic inflammatory response syndrome

SOFA:

Sequential organ failure assessment

TF:

Inflammation is tissue factor

TFPI:

Tissue factor pathway inhibitor

TGF-β1:

Transforming growth factor-β1

Th:

T helper cell

Th1:

T helper type 1

Th2:

T helper type 2

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor-α

Treg:

Regulatory T cell

TRIF:

TIR-domain containing adaptor-inducing interferon-β

VACM1:

Vascular cell adhesion molecule-1

VEGF:

Vascular endothelial growth factor

VHL:

von-Hippel-Lindau

VWF:

Von Willebrand factor

References

  1. De Bosscher K, Vanden Berghe W, Haegeman G (2003) The interplay between the glucocorticoid receptor and nuclear factor-κB or activator protein-1: molecular mechanisms for gene repression. Endocr Rev 24(4):488–522

    Article  CAS  Google Scholar 

  2. Hierholzer C, Billiar TR (2001) Molecular mechanisms in the early phase of hemorrhagic shock. Langenbecks Arch Surg 386:302

    Article  CAS  Google Scholar 

  3. Lenz A, Franklin GA, Cheadle WG (2007) Systemic inflammation after trauma. Injury 38(12):1336–1345

    Article  Google Scholar 

  4. Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H et al (2011) A genomic storm in critically injured humans. J Exp Med 208(13):2581–2590

    Article  CAS  Google Scholar 

  5. Cabrera CP, Manson J, Shepherd JM, Torrance HD, Watson D, Longhi MP et al (2017) Signatures of inflammation and impending multiple organ dysfunction in the hyperacute phase of trauma: a prospective cohort study. PLoS Med 14:e1002352

    Article  CAS  Google Scholar 

  6. Liu D, Namas RA, Vodovotz Y, Peitzman AB, Simmons RL, Yuan H et al (2020) Unsupervised clustering analysis based on mods severity identifies four distinct organ dysfunction patterns in severely injured blunt trauma patients. Front Med 7:46

    Article  Google Scholar 

  7. Cole E, Gillespie S, Vulliamy P, Brohi K, Akkad H, Apostolidou K et al (2020) Multiple organ dysfunction after trauma. Br J Surg 107(4):402–412

    Article  CAS  Google Scholar 

  8. Seymour CW, Kennedy JN, Wang S, Chang CCH, Elliott CF, Xu Z et al (2019) Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA 321:2003

    Article  CAS  Google Scholar 

  9. Scicluna BP, van Vught LA, Zwinderman AH, Wiewel MA, Davenport EE, Burnham KL et al (2017) Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir Med 5(10):816–826

    Article  Google Scholar 

  10. Waltz P, Carchman EH, Young AC, Rao J, Rosengart MR, Kaczorowski D et al (2011) Lipopolysaccaride induces autophagic signaling in macrophages via a TLR4, heme oxygenase-1 dependent pathway. Autophagy 7:315

    Article  CAS  Google Scholar 

  11. Zhang Q, Cao X (2019) Epigenetic regulation of the innate immune response to infection. Nat Rev Immunol 19:417–432

    Article  CAS  Google Scholar 

  12. Kaczorowski DJ, Mollen KP, Edmonds R, Billiar TR (2008) Early events in the recognition of danger signals after tissue injury. J Leukoc Biol 83:546

    Article  CAS  Google Scholar 

  13. Mollen KP, Anand RJ, Tsung A, Prince JM, Levy RM, Billiar TR (2006) Emerging paradigm: toll-like receptor 4—sentinel for the detection of tissue damage. Shock 26:430

    Article  CAS  Google Scholar 

  14. Lu B, Wang C, Wang M, Li W, Chen F, Tracey KJ et al (2014) Molecular mechanism and therapeutic modulation of high mobility group box 1 release and action: an updated review. Expert Rev Clin Immunol 10:713

    Article  CAS  Google Scholar 

  15. Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A (2008) HMGB1: endogenous danger signaling. Mol Med 14:476

    Article  CAS  Google Scholar 

  16. Deng M, Scott MJ, Fan J, Billiar TR (2019) Location is the key to function: HMGB1 in sepsis and trauma-induced inflammation. J Leukoc Biol 106(1):161–169

    CAS  Google Scholar 

  17. Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364(7):656–665

    Article  CAS  Google Scholar 

  18. Adams JM, Difazio LT, Rolandelli RH, Luján JJ, Haskó G, Csóka B et al (2009) HIF-1: a key mediator in hypoxia (review). Acta Physiol Hung 96:19

    Article  CAS  Google Scholar 

  19. Dehne N, Brüne B (2009) HIF-1 in the inflammatory microenvironment. Exp Cell Res 315:1791

    Article  CAS  Google Scholar 

  20. Jassem W, Heaton ND (2004) The role of mitochondria in ischemia/reperfusion injury in organ transplantation. Kidney Int 66:514

    Article  CAS  Google Scholar 

  21. Fink MP (2002) Reactive oxygen species as mediators of organ dysfunction caused by sepsis, acute respiratory distress syndrome, or hemorrhagic shock: potential benefits of resuscitation with Ringer’s ethyl pyruvate solution. Curr Opin Clin Nutr Metab Care 5:167

    Article  CAS  Google Scholar 

  22. Mahbub S, Brubaker AL, Kovacs EJ (2011) Aging of the innate immune system: an update. Curr Immunol Rev 7(1):104–115

    Article  CAS  Google Scholar 

  23. Maier RV (2000) Pathogenesis of multiple organ dysfunction syndrome—endotoxin, inflammatory cells, and their mediators: cytokines and reactive oxygen species. Surg Infect 1:197

    Article  CAS  Google Scholar 

  24. Fortin CF, McDonald PP, Lesur O, Fülöp T (2008) Aging and neutrophils: there is still much to do. Rejuvenation Res 11:873

    Article  CAS  Google Scholar 

  25. Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU (2009) Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ 16(11):1438–1444

    Article  CAS  Google Scholar 

  26. Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM et al (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13:463

    Article  CAS  Google Scholar 

  27. Makarenkova VP, Bansal V, Matta BM, Perez LA, Ochoa JB (2006) CD11b + /Gr-1 + myeloid suppressor cells cause T cell dysfunction after traumatic stress. J Immunol 176:2085

    Article  CAS  Google Scholar 

  28. Lord JM, Butcher S, Killampali V, Lascelles D, Salmon M (2001) Neutrophil ageing and immunesenescence. Mech Ageing Dev 122(14):1521–1535

    Article  CAS  Google Scholar 

  29. Gupta DL, Bhoi S, Mohan T, Galwnkar S, Rao DN (2016) Coexistence of Th1/Th2 and Th17/Treg imbalances in patients with post traumatic sepsis. Cytokine 88:214

    Article  CAS  Google Scholar 

  30. Mauri C, Bosma A (2012) Immune regulatory function of B cells. Annu Rev Immunol 30:221–241

    Article  CAS  Google Scholar 

  31. Murphy TJ, Choileain NN, Zang Y, Mannick JA, Lederer JA (2005) CD4 + CD25 + regulatory T cells control innate immune reactivity after injury. J Immunol 174:2957

    Article  CAS  Google Scholar 

  32. Wisnoski N, Chung CS, Chen Y, Huang X, Ayala A (2007) The contribution of CD4+ CD25+ T-regulatory-cells to immune suppression in sepsis. Shock 27:251

    Article  CAS  Google Scholar 

  33. Choileain NN, MacConmara M, Zang Y, Murphy TJ, Mannick JA, Lederer JA (2006) Enhanced regulatory T cell activity is an element of the host response to injury. J Immunol 176(1):225–236

    Article  CAS  Google Scholar 

  34. da Silva RB, Münz C (2011) Natural killer cell activation by dendritic cells: balancing inhibitory and activating signals. Cell Mol Life Sci 68(21):3505–3518

    Article  CAS  Google Scholar 

  35. Flodström M, Shi FD, Sarvetnick N, Ljunggren HG (2002) The natural killer cell—friend or foe in autoimmune disease? Scand J Immunol 55(5):432–441

    Article  Google Scholar 

  36. Lünemann A, Lünemann JD, Münz C (2009) Regulatory NK-cell functions in inflammation and autoimmunity. Mol Med 15(9-10):352–358

    Article  CAS  Google Scholar 

  37. Godfrey DI, Berzins SP (2007) Control points in NKT-cell development. Nat Rev Immunol 7(7):505–518

    Article  CAS  Google Scholar 

  38. Pilones KA, Aryankalayil J, Demaria S (2012) Invariant NKT cells as novel targets for immunotherapy in solid tumors. Clin Dev Immunol 2012:720803

    Article  CAS  Google Scholar 

  39. Chan WL, Pejnovic N, Liew TV, Lee CA, Groves R, Hamilton H (2003) NKT cell subsets in infection and inflammation. Immunol Lett 85(2):159–163

    Article  CAS  Google Scholar 

  40. Faunce DE, Gamelli RL, Choudhry MA, Kovacs EJ (2003) A role for CD1d-restricted NKT cells in injury-associated T cell suppression. J Leukoc Biol 73:747

    Article  CAS  Google Scholar 

  41. Tulley JM, Palmer JL, Gamelli RL, Faunce DE (2008) Prevention of injury-induced suppression of T-cell immunity by the Cd1d/NKT cell-specific ligand α-galactosylceramide. Shock 29:269

    Article  CAS  Google Scholar 

  42. Palmer JL, Tulley JM, Kovacs EJ, Gamelli RL, Taniguchi M, Faunce DE (2006) Injury-induced suppression of effector T cell immunity requires CD1d-positive APCs and CD1d-restricted NKT cells. J Immunol 177:92

    Article  CAS  Google Scholar 

  43. Tinsley KW, Grayson MH, Swanson PE, Drewry AM, Chang KC, Karl IE et al (2003) Sepsis induces apoptosis and profound depletion of splenic interdigitating and follicular dendritic cells. J Immunol 171(2):909–914

    Article  CAS  Google Scholar 

  44. Hotchkiss RS, Tinsley KW, Swanson PE, Grayson MH, Osborne DF, Wagner TH et al (2002) Depletion of dendritic cells, but not macrophages, in patients with sepsis. J Immunol 168(5):2493–2500

    Article  CAS  Google Scholar 

  45. Ding Y, Chung CS, Newton S, Chen Y, Carlton S, Albina JE et al (2004) Polymicrobial sepsis induces divergent effects on splenic and peritoneal dendritic cell function in mice. Shock 22(2):137–144

    Article  Google Scholar 

  46. Kawasaki T, Hubbard WJ, Choudhry MA, Schwacha MG, Bland KI, Chaudry IH (2006) Trauma-hemorrhage induces depressed splenic dendritic cell functions in mice. J Immunol 177(7):4514–4520

    Article  CAS  Google Scholar 

  47. Tiesi G, Reino D, Mason L, Palange D, Tomaio JN, Deitch EA (2013) Early trauma-hemorrhage-induced splenic and thymic apoptosis is gut-mediated and toll-like receptor 4-dependent. Shock 39:507

    Article  CAS  Google Scholar 

  48. Kawasaki T, Choudhry MA, Schwacha MG, Fujimi S, Lederer JA, Bland KI et al (2008) Trauma-hemorrhage inhibits splenic dendritic cell proinflammatory cytokine production via a mitogen-activated protein kinase process. Am J Physiol Cell Physiol 294(3):C754–C764

    Article  CAS  Google Scholar 

  49. Seki E, Brenner DA (2008) Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 48:322

    Article  CAS  Google Scholar 

  50. Mayer AK, Muehmer M, Mages J, Gueinzius K, Hess C, Heeg K et al (2007) Differential recognition of TLR-dependent microbial ligands in human bronchial epithelial cells. J Immunol 178:3134

    Article  CAS  Google Scholar 

  51. Jilling T, Simon D, Lu J, Meng FJ, Li D, Schy R et al (2006) The roles of bacteria and TLR4 in rat and murine models of necrotizing enterocolitis. J Immunol 177:3273

    Article  CAS  Google Scholar 

  52. Sawa Y, Tsuruga E, Iwasawa K, Ishikawa H, Yoshida S (2008) Leukocyte adhesion molecule and chemokine production through lipoteichoic acid recognition by toll-like receptor 2 in cultured human lymphatic endothelium. Cell Tissue Res 333:237

    Article  CAS  Google Scholar 

  53. Chakravarty S, Herkenham M (2005) Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J Neurosci 25:1788

    Article  CAS  Google Scholar 

  54. Buchholz BM, Chanthaphavong RS, Billiar TR, Bauer AJ (2012) Role of interleukin-6 in hemopoietic and non-hemopoietic synergy mediating TLR4-triggered late murine ileus and endotoxic shock. Neurogastroenterol Motil 24:658

    Article  CAS  Google Scholar 

  55. Tsung A, Sahai R, Tanaka H, Nakao A, Fink MP, Lotze MT et al (2005) The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 201:1135

    Article  CAS  Google Scholar 

  56. Ben-Ari Z, Avlas O, Fallach R, Schmilovitz-Weiss H, Chepurko Y, Pappo O et al (2012) Ischemia and reperfusion liver injury is reduced in the absence of toll-like receptor 4. Cell Physiol Biochem 30:489

    Article  CAS  Google Scholar 

  57. Hui W, Jinxiang Z, Heshui W, Zhuoya L, Qichang Z (2009) Bone marrow and non-bone marrow TLR4 regulates hepatic ischemia/reperfusion injury. Biochem Biophys Res Commun 389:328

    Article  CAS  Google Scholar 

  58. Mollen KP, Levy RM, Prince JM, Hoffman RA, Scott MJ, Kaczorowski DJ et al (2008) Systemic inflammation and end organ damage following trauma involves functional TLR4 signaling in both bone marrow-derived cells and parenchymal cells. J Leukoc Biol 83:80

    Article  CAS  Google Scholar 

  59. Tsung A, Klune JR, Zhang X, Jeyabalan G, Cao Z, Peng X et al (2007) HMGB1 release induced by liver ischemia involves toll-like receptor 4-dependent reactive oxygen species production and calcium-mediated signaling. J Exp Med 204:2913

    Article  CAS  Google Scholar 

  60. Nace GW, Huang H, Klune JR, Eid RE, Rosborough BR, Korff S et al (2013) Cellular-specific role of toll-like receptor 4 in hepatic ischemia-reperfusion injury in mice. Hepatology 58:374

    Article  CAS  Google Scholar 

  61. Deng M, Scott MJ, Loughran P, Gibson G, Sodhi C, Watkins S et al (2013) Lipopolysaccharide clearance, bacterial clearance, and systemic inflammatory responses are regulated by cell type–specific functions of TLR4 during Sepsis. J Immunol 190:5152

    Article  CAS  Google Scholar 

  62. Deng M, Tang Y, Li W, Wang X, Zhang R, Zhang X et al (2018) The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis. Immunity 49:740

    Article  CAS  Google Scholar 

  63. Zhang H, Zeng L, Xie M, Liu J, Zhou B, Wu R et al (2020) TMEM173 drives lethal coagulation in sepsis. Cell Host Microbe 27:556

    Article  CAS  Google Scholar 

  64. Yang X, Cheng X, Tang Y, Qiu X, Wang Y, Kang H et al (2019) Bacterial endotoxin activates the coagulation cascade through gasdermin D-dependent phosphatidylserine exposure. Immunity 51(6):983–996.e6

    Article  CAS  Google Scholar 

  65. Yang X, Cheng X, Tang Y, Qiu X, Wang Z, Fu G et al (2020) The role of type 1 interferons in gram-negative bacteria-induced coagulation. Blood 135(14):1087–1100

    CAS  Google Scholar 

  66. Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7(10):803–815

    Article  CAS  Google Scholar 

  67. Sawa Y, Ueki T, Hata M, Iwasawa K, Tsuruga E, Kojima H et al (2008) LPS-induced IL-6, IL-8, VCAM-1, and ICAM-1 expression in human lymphatic endothelium. J Histochem Cytochem 56:97

    Article  CAS  Google Scholar 

  68. Norman MU, Lister KJ, Yang YH, Issekutz A, Hickey MJ (2005) TNF regulates leukocyte-endothelial cell interactions and microvascular dysfunction during immune complex-mediated inflammation. Br J Pharmacol 144(2):265–274

    Article  CAS  Google Scholar 

  69. Varani J, Ward PA (1994) Mechanisms of endothelial cell injury in acute inflammation. Shock 2(5):311–319

    Article  CAS  Google Scholar 

  70. Iba T, Levy JH (2018) Inflammation and thrombosis: roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. J Thromb Haemost 16:231

    Article  CAS  Google Scholar 

  71. Dolmatova E V, Wang K, Mandavilli R, Griendling KK (2020) The effects of sepsis on endothelium and clinical implications. Cardiovasc Res. cvaa070

    Google Scholar 

  72. Vulliamy P, Kornblith LZ, Kutcher ME, Cohen MJ, Brohi K, Neal MD (2020) Alterations in platelet behavior after major trauma: adaptive or maladaptive? Platelets. 1–10

    Google Scholar 

  73. D’Atri LP, Schattner M (2017) Platelet toll-like receptors in thromboinflammation. Front Biosci (Landmark Ed) 22:1867–1883

    Article  Google Scholar 

  74. Carestia A, Kaufman T, Rivadeneyra L, Landoni VI, Pozner RG, Negrotto S et al (2016) Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. J Leukoc Biol 99(1):153–162

    Article  CAS  Google Scholar 

  75. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Delezay O, Pozzetto B, McNicol A et al (2008) Toll-like receptor 4 ligand can differentially modulate the release of cytokines by human platelets. Br J Haematol 141:84

    Article  CAS  Google Scholar 

  76. Freedman JE (2003) CD40-CD40L and platelet function: beyond hemostasis. Circ Res 92:944

    Article  CAS  Google Scholar 

  77. Vogel S, Bodenstein R, Chen Q, Feil S, Feil R, Rheinlaender J et al (2015) Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest 125:4638

    Article  Google Scholar 

  78. Mellott JK, Nick HS, Waters MF, Billiar TR, Geller DA, Chesrown SE (2001) Cytokine-induced changes in chromatin structure and in vivo footprints in the inducible NOS promoter. Am J Physiol Lung Cell Mol Physiol 280(3):L390–L399

    Article  CAS  Google Scholar 

  79. Beckman JS, Crow JP (1993) Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem Soc Trans 21:330

    Article  CAS  Google Scholar 

  80. Hierholzer C, Harbrecht B, Menezes JM, Kane J, Micking J, Nathan CF et al (1998) Essential role of induced nitric oxide in the initiation of the inflammatory response after hemorrhagic shock. J Exp Med 187(6):917–928

    Article  CAS  Google Scholar 

  81. Darwiche SS, Pfeifer R, Menzel C, Ruan X, Hoffman M, Cai C et al (2012) Inducible nitric oxide synthase contributes to immune dysfunction following trauma. Shock 38(5):499–507

    Article  CAS  Google Scholar 

  82. Chang R, Cardenas JC, Wade CE, Holcomb JB (2016) Advances in the understanding of trauma-induced coagulopathy. Blood 128(8):1043–1049

    Article  CAS  Google Scholar 

  83. Levi M, van der Poll T (2017) Coagulation and sepsis. Thromb Res 149:38

    Article  CAS  Google Scholar 

  84. Witkowski M, Landmesser U, Rauch U (2016) Tissue factor as a link between inflammation and coagulation. Trends Cardiovasc Med 26:297

    Article  CAS  Google Scholar 

  85. Levi M, van der Poll T (2010) Inflammation and coagulation. Crit Care Med 38(2 Suppl):S26–S34

    Article  CAS  Google Scholar 

  86. Taylor FB, Chang A, Ruf W, Morrissey JH, Hinshaw L, Catlett R et al (1991) Lethal E. coli septic shock is prevented by blocking tissue factor with monoclonal antibody. Circ Shock 33(3):127–134

    Google Scholar 

  87. Boehme MWJ, Deng Y, Raeth U, Bierhaus A, Ziegler R, Stremmel W et al (1996) Release of thrombomodulin from endothelial cells by concerted action of TNF-α and neutrophils: in vivo and in vitro studies. Immunology 87(1):134–140

    CAS  Google Scholar 

  88. van der Poll T, De Jonge E, Levi M (2001) Regulatory role of cytokines in disseminated intravascular coagulation. Semin Thromb Hemost 27(6):639–651

    Article  Google Scholar 

  89. Davalos D, Akassoglou K (2012) Fibrinogen as a key regulator of inflammation in disease. Semin Immunopathol 34:43

    Article  CAS  Google Scholar 

  90. Liu Y, Yuan Y, Li Y, Zhang J, Xiao G, Vodovotz Y et al (2009) Interacting neuroendocrine and innate and acquired immune pathways regulate neutrophil mobilization from bone marrow following hemorrhagic shock. J Immunol 182:572

    Article  CAS  Google Scholar 

  91. Elhassan IO, Hannoush EJ, Sifri ZC, Jones E, Alzate WD, Rameshwar P et al (2011) Beta-blockade prevents hematopoietic progenitor cell suppression after hemorrhagic shock. Surg Infect (Larchmt) 12(4):273–278

    Article  Google Scholar 

  92. Elkhatib SK, Case AJ (2019) Autonomic regulation of T-lymphocytes: implications in cardiovascular disease. Pharmacol Res 146:104293

    Article  CAS  Google Scholar 

  93. Le Tulzo Y, Shenkar R, Kaneko D, Moine P, Fantuzzi G, Dinarello CA et al (1997) Hemorrhage increases cytokine expression in lung mononuclear cells in mice. Involvement of catecholamines in nuclear factor-κB regulation and cytokine expression. J Clin Invest 99(7):1516–1524

    Article  Google Scholar 

  94. Kohm AP, Sanders VM (2001) Norepinephrine and β2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharmacol Rev 53(4):487–525

    CAS  Google Scholar 

  95. Collins JL, Vodovotz Y, Yoneyama T, Hatakeyama K, Green AM, Billiar TR (2001) Catecholamines decrease nitric oxide production by cytokine-stimulated hepatocytes. Surgery 130(2):256–264

    Article  CAS  Google Scholar 

  96. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458

    Article  CAS  Google Scholar 

  97. Parrish WR, Rosas-Ballina M, Gallowitsch-Puerta M, Ochani M, Ochani K, Yang LH et al (2008) Modulation of TNF release by choline requires α7 subunit nicotinic acetylcholine receptor-mediated signaling. Mol Med 14:567

    Article  CAS  Google Scholar 

  98. Pavlov VA, Ochani M, Gallowitsch-Puerta M, Ochani K, Huston JM, Czura CJ et al (2006) Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc Natl Acad Sci U S A 103(13):5219–5223

    Article  CAS  Google Scholar 

  99. Lakhan SE, Kirchgessner A (2011) Anti-inflammatory effects of nicotine in obesity and ulcerative colitis. J Transl Med 9:129

    Article  CAS  Google Scholar 

  100. Guslandi M (1999) Nicotine treatment for ulcerative colitis. Br J Clin Pharmacol 48(4):481–484

    Article  CAS  Google Scholar 

  101. Setoguchi D, Yatsuki H, Sadahiro T, Nakamura M, Hirayama Y, Watanabe E et al (2012) Effects of a peripheral cholinesterase inhibitor on cytokine production and autonomic nervous activity in a rat model of sepsis. Cytokine 57:238–244

    Article  CAS  Google Scholar 

  102. Hofer S, Eisenbach C, Lukic IK, Schneider L, Bode K, Brueckmann M et al (2008) Pharmacologic cholinesterase inhibition improves survival in experimental sepsis. Crit Care Med 36(2):404–408

    Article  CAS  Google Scholar 

  103. Namas R, Ghuma A, Hermus L, Zamora R, Okonkwo DO, Billiar TR et al (2009) The acute inflammatory response in trauma/hemorrhage and traumatic brain injury: current state and emerging prospects. Libyan J Med 4:136

    Article  Google Scholar 

  104. Williams JP, TTV P, Weiser MR, Reid R, Kobzik L, Moore FD et al (1999) Intestinal reperfusion injury is mediated by IgM and complement. J Appl Physiol 86(3):938–942

    Article  CAS  Google Scholar 

  105. Fleming SD, Shea-Donohue T, Guthridge JM, Kulik L, Waldschmidt TJ, Gipson MG et al (2002) Mice deficient in complement receptors 1 and 2 lack a tissue injury-inducing subset of the natural antibody repertoire. J Immunol 169:2126

    Article  CAS  Google Scholar 

  106. Thurman JM, Ljubanovic D, Edelstein CL, Gilkeson GS, Holers VM (2003) Lack of a functional alternative complement pathway ameliorates ischemic acute renal failure in mice. J Immunol 170(3):1517–1523

    Article  CAS  Google Scholar 

  107. Kaczorowski DJ, Scott MJ, Pibris JP, Afrazi A, Nakao A, Edmonds RD et al (2012) Mammalian DNA is an endogenous danger signal that stimulates local synthesis and release of complement factor B. Mol Med 18(1):851–860

    Article  CAS  Google Scholar 

  108. Kaczorowski DJ, Afrazi A, Scott MJ, Kwak JH, Gill R, Edmonds RD et al (2010) Pivotal advance: the pattern recognition receptor ligands lipopolysaccharide and polyinosine-polycytidylic acid stimulate factor B synthesis by the macrophage through distinct but overlapping mechanisms. J Leukoc Biol 88(4):609–618

    Article  CAS  Google Scholar 

  109. Cai C, Gill R, Eum HA, Cao Z, Loughran PA, Darwiche S et al (2010) Complement factor 3 deficiency attenuates hemorrhagic shock-related hepatic injury and systemic inflammatory response syndrome. Am J Physiol Regul Integr Comp Physiol 299:R1175

    Article  CAS  Google Scholar 

  110. Karasu E, Nilsson B, Köhl J, Lambris JD, Huber-Lang M (2019) Targeting complement pathways in polytrauma- and sepsis-induced multiple-organ dysfunction. Front Immunol 10:543

    Article  CAS  Google Scholar 

  111. Moore FA, Moore EE (1995) Evolving concepts in the pathogenesis of postinjury multiple organ failure. Surg Clin North Am 75(2):257–277

    Article  CAS  Google Scholar 

  112. De Maio A, Torres MB, Reeves RH (2005) Genetic determinants influencing the response to injury, inflammation, and sepsis. Shock 23(1):11–17

    Article  Google Scholar 

  113. Schröder J, Kahlke V, Staubach KH, Zabel P, Stüber F (1998) Gender differences in human sepsis. Arch Surg 133(11):1200–1205

    Article  Google Scholar 

  114. George RL, McGwin G, Windham ST, Melton SM, Metzger J, Chaudry IH et al (2003) Age-related gender differential in outcome after blunt or penetrating trauma. Shock 19(1):28–32

    Article  Google Scholar 

  115. Frink M, Pape HC, Van Griensven M, Krettek C, Chaudry IH, Hildebrand F (2007) Influence of sex and age on mods and cytokines after multiple injuries. Shock 27(2):151–156

    Article  CAS  Google Scholar 

  116. Hotchkiss RS, Osmon SB, Chang KC, Wagner TH, Coopersmith CM, Karl IE (2005) Accelerated lymphocyte death in sepsis occurs by both the death receptor and mitochondrial pathways. J Immunol 174(8):5110–5118

    Article  CAS  Google Scholar 

  117. Kasten KR, Tschöp J, Adediran SG, Hildeman DA, Caldwell CC (2010) T cells are potent early mediators of the host response to sepsis. Shock 34(4):327–336

    Article  CAS  Google Scholar 

  118. Hotchkiss RS, Swanson PE, Knudson CM, Chang KC, Cobb JP, Osborne DF et al (1999) Overexpression of Bcl-2 in transgenic mice decreases apoptosis and improves survival in sepsis. J Immunol 162(7):4148–4156

    Article  CAS  Google Scholar 

  119. Kelly JL, Lyons A, Soberg CC, Mannick JA, Lederer JA (1997) Anti-interleukin-10 antibody restores burn-induced defects in T-cell function. Surgery 122:146

    Article  CAS  Google Scholar 

  120. Caterino JM, Valasek T, Werman HA (2010) Identification of an age cutoff for increased mortality in patients with elderly trauma. Am J Emerg Med 28:151

    Article  Google Scholar 

  121. Tornetta P, Mostafavi H, Riina J, Turen C, Reimer B, Levine R et al (1999) Morbidity and mortality in elderly trauma patients. J Trauma 46:702

    Article  Google Scholar 

  122. Taylor MD, Tracy JK, Meyer W, Pasquale M, Napolitano LM (2002) Trauma in the elderly: intensive care unit resource use and outcome. J Trauma 53(3):407–414

    Article  Google Scholar 

  123. Morris JA, Mackenzie EJ, Damiano AM, Bass SM (1990) Mortality in trauma patients: the interaction between host factors and severity. J Trauma 30:1476

    Article  Google Scholar 

  124. Hollis S, Lecky F, Yates DW, Woodford M (2006) The effect of pre-existing medical conditions and age on mortality after injury. J Trauma 61(5):1255–1260

    Article  Google Scholar 

  125. Tran DD, Groeneveld ABJ, Van der Meulen J, Nauta JJP, van Schijndel RJM S, Thijs LG (1990) Age, chronic disease, sepsis, organ system failure, and mortality in a medical intensive care unit. Crit Care Med 18(5):474–479

    Article  CAS  Google Scholar 

  126. Brüünsgaard H, Pedersen BK (2003) Age-related inflammatory cytokines and disease. Immunol Allergy Clin North Am 23(1):15–39

    Article  Google Scholar 

  127. Krabbe KS, Bruunsgaard H, Hansen CM, Møller K, Fonsmark L, Qvist J et al (2001) Ageing is associated with a prolonged fever response in human endotoxemia. Clin Diagn Lab Immunol 8(2):333–338

    Article  CAS  Google Scholar 

  128. Chatta GS, Andrews RG, Rodger E, Schrag M, Hammond WP, Dale DC (1993) Hematopoietic progenitors and aging: alterations in granulocytic precursors and responsiveness to recombinant human G-CSF, GM-CSF, and IL-3. J Gerontol 48(5):M207–M212

    Article  CAS  Google Scholar 

  129. Fülöp T, Fouquet C, Allaire P, Perrin N, Lacombe G, Stankova J et al (1997) Changes in apoptosis of human polymorphonuclear granulocytes with aging. Mech Ageing Dev 96(1-3):15–34

    Article  Google Scholar 

  130. Lamparello AJ, Namas RA, Abdul-Malak O, Vodovotz Y, Billiar TR (2019) Young and aged blunt trauma patients display major differences in circulating inflammatory mediator profiles after severe injury. J Am Coll Surg 228:148

    Article  Google Scholar 

  131. Braunstein M, Kusmenkov T, Mutschler W, Kammerlander C, Böcker W, Bogner-Flatz V (2020) Polytrauma in older adults leads to significantly increased TIMP-1 levels in the early posttraumatic period. J Immunol Res 2020:1

    Article  CAS  Google Scholar 

  132. Hodes RJ (1999) Telomere length, aging, and somatic cell turnover. J Exp Med 190:153

    Article  CAS  Google Scholar 

  133. Cakman I, Rohwer J, Schütz RM, Kirchner H, Rink L (1996) Dysregulation between TH1 and TH2 T cell subpopulations in the elderly. Mech Ageing Dev 87:197

    Article  CAS  Google Scholar 

  134. Rink L, Cakman I, Kirchner H (1998) Altered cytokine production in the elderly. Mech Ageing Dev 102:199

    Article  CAS  Google Scholar 

  135. Nacionales DC, Szpila B, Ungaro R, Lopez MC, Zhang J, Gentile LF et al (2015) A detailed characterization of the dysfunctional immunity and abnormal myelopoiesis induced by severe shock and trauma in the aged. J Immunol 195(5):2396–2407

    Article  CAS  Google Scholar 

  136. Huber-Lang M, Lambris JD, Ward PA (2018) Innate immune responses to trauma. Nat Immunol 19(4):327–341

    Article  CAS  Google Scholar 

  137. Rus A, Castro L, Del Moral ML, Peinado Á (2010) Inducible NOS inhibitor 1400W reduces hypoxia/re-oxygenation injury in rat lung. Redox Rep 15:169

    Article  CAS  Google Scholar 

  138. Kan WH, Hsu JT, Schwacha MG, Choudhry MA, Raju R, Bland KI et al (2008) Selective inhibition of iNOS attenuates trauma-hemorrhage/resuscitation- induced hepatic injury. J Appl Physiol 105:1076–1082

    Article  CAS  Google Scholar 

  139. Gennari R, Alexander JW, Pyles T, Hartmann S, Ogle CK (1994) Effects of antimurine interleukin-6 on bacterial translocation during gut-derived sepsis. Arch Surg 129:1191

    Article  CAS  Google Scholar 

  140. Fontanilla CV, Faunce DE, Gregory MS, Messingham KAN, Durbin EA, Duffner LA et al (2000) Anti-interleukin-6 antibody treatment restores cell-mediated immune function in mice with acute ethanol exposure before burn trauma. Alcohol Clin Exp Res 24:1392

    Article  CAS  Google Scholar 

  141. Yang R, Harada T, Mollen KP, Prince JM, Levy RM, Englert JA et al (2006) Anti-HMGB1 neutralizing antibody ameliorates gut barrier dysfunction and improves survival after hemorrhagic shock. Mol Med 12:105

    Article  CAS  Google Scholar 

  142. Ruan X, Darwiche SS, Cai C, Scott MJ, Pape HC, Billiar TR (2015) Anti-HMGB1 monoclonal antibody ameliorates immunosuppression after peripheral tissue trauma: attenuated T-lymphocyte response and increased splenic CD11b+Gr-1+ myeloid-derived suppressor cells require HMGB1. Mediators Inflamm. 2015:1

    Article  CAS  Google Scholar 

  143. Okuma Y, Liu K, Wake H, Zhang J, Maruo T, Date I et al (2012) Anti-high mobility group box-1 antibody therapy for traumatic brain injury. Ann Neurol 72:373

    Article  CAS  Google Scholar 

  144. Dalle Lucca JJ, Li Y, Simovic M, Pusateri AE, Falabella M, Dubick MA et al (2012) Effects of C1 inhibitor on tissue damage in a porcine model of controlled hemorrhage. Shock 38:82

    Article  CAS  Google Scholar 

  145. Van Griensven M, Ricklin D, Denk S, Halbgebauer R, Braun CK, Schultze A et al (2019) Protective effects of the complement inhibitor compstatin CP40 in hemorrhagic shock. Shock 51(1):78–87

    Article  CAS  Google Scholar 

  146. O’Suilleabhain C, O’Sullivan ST, Kelly JL, Lederer J, Mannick JA, Rodrick ML (1996) Interleukin-12 treatment restores normal resistance to bacterial challenge after burn injury. Surgery 120:290

    Article  Google Scholar 

  147. Colombo MP, Trinchieri G (2002) Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev 13:155

    Article  CAS  Google Scholar 

  148. Howard M, Muchamuel T, Andrade S, Menon S (1993) Interleukin 10 protects mice from lethal endotoxemia. J Exp Med 177:1205

    Article  CAS  Google Scholar 

  149. van der Poll T, Marchant A, Buurman WA, Berman L, Keogh CV, Lazarus DD et al (1995) Endogenous IL-10 protects mice from death during septic peritonitis. J Immunol 155(11):5397–5401

    Article  Google Scholar 

  150. Greenberger MJ, Strieter RM, Kunkel SL, Danforth JM, Goodman RE, Standiford TJ (1995) Neutralization of IL-10 increases survival in a murine model of Klebsiella pneumonia. J Immunol 155(2):722–729

    Article  CAS  Google Scholar 

  151. Lenz AM, Franklin GA, Fairweather M, McClintock ML, Jala VR, Peyton JC et al (2007) Endogenous IL-10 leads to impaired bacterial clearance and reduced survival in a murine model of chronic peritonitis. Cytokine 40:207

    Article  CAS  Google Scholar 

  152. Steinhauser ML, Hogaboam CM, Kunkel SL, Lukacs NW, Strieter RM, Standiford TJ (1999) IL-10 is a major mediator of sepsis-induced impairment in lung antibacterial host defense. J Immunol 162(1):392–399

    Article  CAS  Google Scholar 

  153. Unsinger J, McGlynn M, Kasten KR, Hoekzema AS, Watanabe E, Muenzer JT et al (2010) IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis. J Immunol 184:3768

    Article  CAS  Google Scholar 

  154. Francois B, Jeannet R, Daix T, Walton AH, Shotwell MS, Unsinger J et al (2018) Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial. JCI Insight 3:e98960

    Article  Google Scholar 

  155. Hotchkiss RS, Tinsley KW, Swanson PE, Chang KC, Cobb JP, Buchman TG et al (1999) Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc Natl Acad Sci U S A 96(25):14541–14546

    Article  CAS  Google Scholar 

  156. Rosenbloom AJ, Linden PK, Dorrance A, Penkosky N, Cohen-Melamed MH, Pinsky MR (2005) Effect of granulocyte-monocyte colony-stimulating factor therapy on leukocyte function and clearance of serious infection in nonneutropenic patients. Chest 127(6):2139–2150

    Article  CAS  Google Scholar 

  157. Presneill JJ, Harris T, Stewart AG, Cade JF, Wilson JW (2002) A randomized phase II trial of granulocyte-macrophage colony-stimulating factor therapy in severe sepsis with respiratory dysfunction. Am J Respir Crit Care Med 166(2):138–143

    Article  Google Scholar 

  158. Nakos G, Malamou-Mitsi VD, Lachana A, Karassavoglou A, Kitsiouli E, Agnandi N et al (2002) Immunoparalysis in patients with severe trauma and the effect of inhaled interferon-γ. Crit Care Med 30(7):1488–1494

    Article  CAS  Google Scholar 

  159. Zhang Y, Zhou Y, Lou J, Li J, Bo L, Zhu K et al (2010) PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction. Crit Care 14:R220

    Article  Google Scholar 

  160. Hotchkiss RS, Colston E, Yende S, Angus DC, Moldawer LL, Crouser ED et al (2019) Immune checkpoint inhibition in sepsis: a phase 1b randomized, placebo-controlled, single ascending dose study of antiprogrammed cell death-ligand 1 antibody (BMS-936559). Crit Care Med 47:632

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy R. Billiar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bonaroti, J.W., Zettel, K.R., Billiar, T.R., Neal, M.D. (2021). Disorder of Systemic Inflammation in Sepsis and Trauma: A Systems Perspective. In: Vodovotz, Y., An, G. (eds) Complex Systems and Computational Biology Approaches to Acute Inflammation. Springer, Cham. https://doi.org/10.1007/978-3-030-56510-7_6

Download citation

Publish with us

Policies and ethics