Skip to main content

Temporal and Spatial Analyses of TB Granulomas to Predict Long-Term Outcomes

  • Chapter
  • First Online:
Book cover Complex Systems and Computational Biology Approaches to Acute Inflammation

Abstract

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), kills more individuals worldwide per year than any other infectious agent. As the hallmark of TB, lung granulomas are complex structures composed of immune cells that interact with and surround bacteria, infected cells, and a necrotic core. This interaction leads to diverse granuloma outcomes across time, ranging from bacterial sterilization to uncontrolled bacterial growth, as well as diverse spatial structures. At this time, there are no systematic quantitative methods to classify the formation, function, and spatial characteristics of granulomas. This type of analysis would enable better understanding and prediction of granuloma behaviors that have known associations with poor clinical outcomes for TB patients. Herein, we develop a temporal and spatial analysis framework for TB granulomas using a systems biology approach combining in silico granuloma modeling, geographic information systems, topological data analysis, and machine learning. We apply this framework to simulated granulomas to understand temporal granuloma dynamics, quantify granuloma spatial structure, and predict the relationship between granuloma structure and bacterial growth. As a proof-of-concept, we apply our in silico predictions to in vivo derived data to test our framework for future applications and as a personalized medicine intervention.

Louis R. Joslyn and Marissa Renardy are co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABM:

Agent-based model

BCG:

Bacillus Calmette–Guérin

CFU:

Colony forming units

GIS:

Geographic information systems

IFN:

Interferon

IHC:

Immunohistochemically

IL:

Interleukin

kNN:

k-nearest neighbors

LHS:

Latin hypercube sampling

MLR:

Multinomial logistic regression

Mtb:

Mycobacterium tuberculosis

NHP:

Nonhuman primate

PET-CT:

Positron emission tomography–computed tomography

SVM:

Support vector machines

TB:

Tuberculosis

TDA:

Topological data analysis

TGF-β:

Transforming growth factor beta

TNF:

Tumor necrosis factor

t-SNE:

t-Distributed stochastic neighbor embedding

References

  1. WHO (2019) Global tuberculosis report 2019. World Health Organization, Geneva

    Google Scholar 

  2. Canetti G (1955) The tubercle bacillus in the pulmonary lesion in man. Springer Publishing Co, New York

    Google Scholar 

  3. Flynn JL, Gideon HP, Mattila JT, Lin PL (2015) Immunology studies in non-human primate models of tuberculosis. Immunol Rev 264(1):60–73

    Article  CAS  Google Scholar 

  4. Rubin EJ (2009) The granuloma in tuberculosis—friend or foe? N Engl J Med 360(23):2471–2473

    Article  CAS  Google Scholar 

  5. Fallahi-Sichani M, Marino S, Flynn JL, Linderman JJ, Kirschner DE (2013) A systems biology approach for understanding granuloma formation and function in tuberculosis. In: McFadden J, Beste DJ, Kierzek AM (eds) Systems biology of tuberculosis. Springer, New York

    Google Scholar 

  6. Cicchese JM, Evans S, Hult C, Joslyn LR, Wessler T, Millar JA et al (2018) Dynamic balance of pro- and anti-inflammatory signals controls disease and limits pathology. Immunol Rev 285(1):147–167

    Article  CAS  Google Scholar 

  7. Coleman MT, Maiello P, Tomko J, Frye LJ, Fillmore D, Janssen C et al (2014) Early changes by (18)Fluorodeoxyglucose positron emission tomography coregistered with computed tomography predict outcome after Mycobacterium tuberculosis infection in cynomolgus macaques. Infect Immun 82(6):2400–2404

    Article  CAS  Google Scholar 

  8. Ehlers S, Schaible U (2013) The granuloma in tuberculosis: dynamics of a host–pathogen collusion. Front Immunol 3:411

    Article  Google Scholar 

  9. Lin PL, Ford CB, Coleman MT, Myers AJ, Gawande R, Ioerger T et al (2014) Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat Med 20(1):75–79

    Article  CAS  Google Scholar 

  10. Flynn JL, Klein E (2010) Pulmonary tuberculosis in monkeys. In: Leong J (ed) A color atlas of comparative pulmonary tuberculosis histopathology. Taylor & Francis Publishers, Park Drive

    Google Scholar 

  11. Russell DG, Cardona P-J, Kim M-J, Allain S, Altare F (2009) Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol 10(9):943–948

    Article  CAS  Google Scholar 

  12. Flynn JL, Chan J, Lin PL (2011) Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol 4(3):271–278

    Article  CAS  Google Scholar 

  13. Elkington P, Lerm M, Kapoor N, Mahon R, Pienaar E, Huh D et al (2019) In vitro granuloma models of tuberculosis: potential and challenges. J Infect Dis 219(12):1858–1866

    Article  Google Scholar 

  14. Flynn JL, Tsenova L, Izzo A, Kaplan G (2017) Experimental animal models of tuberculosis. In: Kaufmann SHE, Rubin E, Britton WJ, Helden P (eds) Handbook of tuberculosis. Wiley, Hoboken, pp 389–426

    Chapter  Google Scholar 

  15. Ray JC, Flynn JL, Kirschner DE (2009) Synergy between individual TNF-dependent functions determines granuloma performance for controlling Mycobacterium tuberculosis infection. J Immunol 182(6):3706–3717

    Article  CAS  Google Scholar 

  16. Marino S, Cilfone NA, Mattila JT, Linderman JJ, Flynn JL, Kirschner DE (2015) Macrophage polarization drives granuloma outcome during Mycobacterium tuberculosis infection. Infect Immun 83(1):324

    Article  CAS  Google Scholar 

  17. Bru A, Cardona P-J (2010) Mathematical modeling of tuberculosis bacillary counts and cellular populations in the organs of infected mice. PLoS One 5(9):e12985

    Article  CAS  Google Scholar 

  18. Repasy T, Lee J, Marino S, Martinez N, Kirschner DE, Hendricks G et al (2013) Intracellular bacillary burden reflects a burst size for Mycobacterium tuberculosis in vivo. PLoS Pathog 9(2):e1003190

    Article  CAS  Google Scholar 

  19. Gammack D, Doering CR, Kirschner DE (2004) Macrophage response to Mycobacterium tuberculosis infection. J Math Biol 48(2):218–242

    Article  CAS  Google Scholar 

  20. Segovia-Juarez JL, Ganguli S, Kirschner D (2004) Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J Theor Biol 231(3):357–376

    Article  CAS  Google Scholar 

  21. Hao W, Schlesinger LS, Friedman A (2016) Modeling granulomas in response to infection in the lung. PLoS One 11(3):e0148738

    Article  CAS  Google Scholar 

  22. Datta M, Via LE, Chen W, Baish JW, Xu L, Barry CE 3rd et al (2016) Mathematical model of oxygen transport in tuberculosis granulomas. Ann Biomed Eng 44(4):863–872

    Article  Google Scholar 

  23. Sershen CL, Plimpton SJ, May EE (2016) Oxygen modulates the effectiveness of granuloma mediated host response to Mycobacterium tuberculosis: a multiscale computational biology approach. Front Cell Infect Microbiol 6:6

    Article  CAS  Google Scholar 

  24. Kirschner D, Pienaar E, Marino S, Linderman JJ (2017) A review of computational and mathematical modeling contributions to our understanding of Mycobacterium tuberculosis within-host infection and treatment. Curr Opin Syst Biol 3:170–185

    Article  Google Scholar 

  25. Flynn JL, Chan J (2001) Immunology of tuberculosis. Annu Rev Immunol 19:93–129

    Article  CAS  Google Scholar 

  26. O'Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MP (2013) The immune response in tuberculosis. Annu Rev Immunol 31:475–527

    Article  CAS  Google Scholar 

  27. Cilfone NA, Perry CR, Kirschner DE, Linderman JJ (2013) Multi-scale modeling predicts a balance of tumor necrosis factor-alpha and interleukin-10 controls the granuloma environment during Mycobacterium tuberculosis infection. PLoS One 8(7):e68680

    Article  CAS  Google Scholar 

  28. Fallahi-Sichani M, El-Kebir M, Marino S, Kirschner DE, Linderman JJ (2011) Multiscale computational modeling reveals a critical role for TNF-alpha receptor 1 dynamics in tuberculosis granuloma formation. J Immunol 186(6):3472–3483

    Article  CAS  Google Scholar 

  29. Fallahi-Sichani M, Kirschner DE, Linderman JJ (2012) NF-kappaB signaling dynamics play a key role in infection control in tuberculosis. Front Physiol 3:170

    Article  Google Scholar 

  30. Marino S, El-Kebir M, Kirschner D (2011) A hybrid multi-compartment model of granuloma formation and T cell priming in tuberculosis. J Theor Biol 280(1):50–62

    Article  CAS  Google Scholar 

  31. Marino S, Gideon HP, Gong C, Mankad S, McCrone JT, Lin PL et al (2016) Computational and empirical studies predict Mycobacterium tuberculosis-specific T cells as a biomarker for infection outcome. PLoS Comput Biol 12(4):e1004804

    Article  CAS  Google Scholar 

  32. Marino S, Hult C, Wolberg P, Linderman JJ, Kirschner DE (2018) The role of dimensionality in understanding granuloma formation. Computation 6(4):58

    Article  CAS  Google Scholar 

  33. Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254(1):178–196

    Article  Google Scholar 

  34. Pienaar E, Cilfone NA, Lin PL, Dartois V, Mattila JT, Butler JR et al (2015) A computational tool integrating host immunity with antibiotic dynamics to study tuberculosis treatment. J Theor Biol 367:166–179

    Article  CAS  Google Scholar 

  35. Topaz CM, Ziegelmeier L, Halverson T (2015) Topological data analysis of biological aggregation models. PLoS One 10(5):e0126383

    Article  CAS  Google Scholar 

  36. Ulmer M, Ziegelmeier L, Topaz CM (2019) A topological approach to selecting models of biological experiments. PLoS One 14(3):e0213679

    Article  CAS  Google Scholar 

  37. Adcock A, Rubin D, Carlsson G (2014) Classification of hepatic lesions using the matching metric. Comput Vis Image Underst 121:36–42

    Article  Google Scholar 

  38. Bendich P, Marron JS, Miller E, Pieloch A, Skwerer S (2016) Persistent homology analysis of brain artery trees. Ann Appl Stat 10(1):198–218

    Article  Google Scholar 

  39. Damiano DB, McGuirl MR (2018) A topological analysis of targeted in-111 uptake in SPECT images of murine tumors. J Math Biol 76(6):1559–1587

    Article  Google Scholar 

  40. Ghrist R (2008) Barcodes: the persistent topology of data. Bull Amer Math Soc 45:61–75

    Article  Google Scholar 

  41. Carlsson G (2009) Topology and data. Bull Amer Math Soc 46:255–308

    Article  Google Scholar 

  42. de Silva V, Carlsson G, editors (2004) Topological estimation using witness complexes. SPBG’04 symposium on point-based graphics 2004. The Eurographics Association

    Google Scholar 

  43. Tharwat A (2018) Classification assessment methods. Appl Comput Inform

    Google Scholar 

  44. Kendall MG (1942) Partial rank correlation. Biometrika 32:277–283

    Article  Google Scholar 

  45. Wessler T, Joslyn LR, Borish HJ, Gideon HP, Flynn JL, Kirschner DE, et al. (2019) A computational model tracks whole-lung Mycobacterium tuberculosis infection and predicts factors that inhibit dissemination. bioRxiv. 713701

    Google Scholar 

  46. Renardy M, Wessler T, Blemker S, Linderman J, Peirce S, Kirschner D (2019) Data-driven model validation across dimensions. Bull Math Biol 81(6):1853–1866

    Article  Google Scholar 

  47. van der Maaten L, Hinton G (2012) Visualizing non-metric similarities in multiple maps. Mach Learn 87(1):33–55

    Article  Google Scholar 

  48. Mattila JT, Ojo OO, Kepka-Lenhart D, Marino S, Kim JH, Eum SY et al (2013) Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J Immunol 191(2):773–784

    Article  CAS  Google Scholar 

  49. Lin PL, Rodgers M, Smith L, Bigbee M, Myers A, Bigbee C et al (2009) Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun 77(10):4631–4642

    Article  CAS  Google Scholar 

  50. Hurdal MK, Gutierrez JB, Laing C, Smith DA (2008) Shape analysis for automated sulcal classification and parcellation of MRI data. J Comb Optim 15(3):257–275

    Article  Google Scholar 

  51. Yu W-Y, Lu P-X, Assadi M, Huang X-L, Skrahin A, Rosenthal A et al (2019) Updates on 18 F-FDG-PET/CT as a clinical tool for tuberculosis evaluation and therapeutic monitoring. Quant Imaging Med Surg 9(6):1132–1146

    Article  Google Scholar 

  52. Lee S, Choi S, Kim SY, Yun MJ, Kim H-I (2017) Potential utility of FDG PET-CT as a non-invasive tool for monitoring local immune responses. J Gastric Cancer 17(4):384–393

    Article  Google Scholar 

  53. Ertay T, Sencan Eren M, Karaman M, Oktay G, Durak H (2017) (18)F-FDG-PET/CT in initiation and progression of inflammation and infection. Mol Imaging Radionucl Ther 26(2):47–52

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH grants R01AI123093 and U01 HL131072 awarded to D.E.K and JLF. Simulations also use resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. ACI-1053575 and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant MCB140228.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise E. Kirschner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joslyn, L.R. et al. (2021). Temporal and Spatial Analyses of TB Granulomas to Predict Long-Term Outcomes. In: Vodovotz, Y., An, G. (eds) Complex Systems and Computational Biology Approaches to Acute Inflammation. Springer, Cham. https://doi.org/10.1007/978-3-030-56510-7_15

Download citation

Publish with us

Policies and ethics