Skip to main content

Questions, Perspectives and Final Considerations of Planting Native Species Under the Climate Change Conditioning

  • Chapter
  • First Online:
Low Intensity Breeding of Native Forest Trees in Argentina

Abstract

Planting native species requires particular genetic considerations in order to minimize the risks of maladaptation and genetic contamination. Outbreeding depression and genetic swamping are possible processes that should be avoided. Authenticity and functionality are two opposing objectives in active restoration of degraded ecosystems. Actual examples of genetic risks in Argentina regarding native species plantation are presented. Climate change is a deep conditioning of tree plantation, and according to the forecast for Argentina a future shifting in the natural range of forest tree species is expected. An example through ecological niche modeling in two Nothofagus species shows possible outcomes of this shift. Another example based on threshold models determining timing of germination describes possible altitudinal shifts. Assisted migration and assisted gene flow are potential resources to mitigate the impact of climate change: should we breed for the present or for the future climate? The dilemma of facing the risk of extinction through a risk of invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken SN, Whitlock MC (2013) Assisted gene flow to facilitate local adaptation to climate change. Annu Rev Ecol Evol S 44:367–388

    Article  Google Scholar 

  • Alfaro RI, Fady B, Vendramin GG, Dawson IK, Fleming RA, Saénz-Romero C et al. (2014) The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change. For Ecol Manag 333:76–87

    Google Scholar 

  • Allen CD, Breshears DD (1998) Drought-induced shift of a forest–woodland ecotone: rapid landscape response to climate variation. Proc Natl Acad Sci U S A 95:14839–14842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aragón R, Groom M (2003) Invasion by Ligustrum lucidum in NW Argentina: plant characteristics in different habitat types. Rev Biol Trop 51:59–70

    PubMed  Google Scholar 

  • Arana MV, Gonzalez-Polo M, Martinez-Meier A, Gallo LA, Benech-Arnold R, Sanchez RA, Batlla D (2016) Seed dormancy responses to temperature relate to Nothofagus species distribution and determine temporal patterns of germination across altitudes in Patagonia. New Phytol 209:507–520

    Article  CAS  PubMed  Google Scholar 

  • Ayup MM, Montti LF, Aragón R, Grau HR (2014) Invasion of Ligustrum lucidum (Oleaceae) in the Southern Yungas. Changes in habitat properties and decline in bird diversity. Acta Oecol 54:72–81

    Article  Google Scholar 

  • Azpilicueta MM, Gallo LA, van Zonneveld M, Thomas E, Moreno C, Marchelli P (2013) Management of Nothofagus genetic resources: definition of genetic zones based on a combination of nuclear and chloroplast marker data. For Ecol Manag 302:414–424

    Article  Google Scholar 

  • Azpilicueta MM, Marchelli P, Gallo LA, Umaña F, Thomas E, van Zonneveld M et al. (2017) Zonas genéticas de raulí y roble pellín en Argentina: herramientas para la conservación y el manejo de la diversidad genética. Ediciones INTA

    Google Scholar 

  • Barros VR, Boninsegna JA, Camilloni IA, Chidiak M, Magrín GO, Rusticucci M (2015) Climate change in Argentina: trends, projections, impacts and adaptation. Wiley Interdisciplinary Rev Clim Change 6:151–169

    Article  Google Scholar 

  • Basey AC, Fant JB, Kramer AT (2015) Producing native plant materials for restoration: 10 rules to collect and maintain genetic diversity. Native Plants J 16:37–52

    Article  Google Scholar 

  • Becker M, Gruenheit N, Steel M, Voelckel C, Deusch O, Heenan PB et al. (2013) Hybridization may facilitate in situ survival of endemic species through periods of climate change. Nat Clim Chang 3:1039–1043

    Google Scholar 

  • Bischoff A, Steinger T, Müller-Schärer H (2010) The importance of plant provenance and genotypic diversity of seed material used for ecological restoration. Restor Ecol 18:338–348

    Article  Google Scholar 

  • Boisvert-Marsh L, Périé C, de Blois S (2014) Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere 5:art83

    Article  Google Scholar 

  • Bradford KJ (1996) Population-based models describing seed dormancy behaviour: implications for experimental design and interpretation. In: Lang GA (ed) Plant dormancy: physiology, biochemistry, and molecular biology. CAB International, Wallingford, pp 313–339

    Google Scholar 

  • Broadhurst LM, Lowe A, Coates DJ, Cunningham SA, McDonald M, Vesk PA, Yates C (2008) Seed supply for broad scale restoration: maximizing evolutionary potential. Evol Appl 1:587–597

    PubMed  PubMed Central  Google Scholar 

  • Bykova O, Chuine I, Morin J, Higgins SI (2012) Temperature dependence of the reproduction niche and its relevance for plant species distributions. J Biogeogr 39:2191–2200

    Article  Google Scholar 

  • Byrne M, Stone L, Millar MA (2011) Assessing genetic risk in revegetation. J Appl Ecol 48:1365–1373

    Article  Google Scholar 

  • Caccia FD, Chaneton EJ, Kitzberger T (2006) Trophic and non-trophic pathways mediate apparent competition through post-dispersal seed predation in a Patagonian mixed forest. Oikos 113:469–480

    Article  Google Scholar 

  • Cagnacci J, Estravis-Barcala M, Lia MV, Martínez-Meier A, Gonzalez PM, Arana MV (2020) The impact of different natural environments on the regeneration dynamics of two Nothofagus species across elevation in the southern Andes. For Ecol Manag 15 May 2020 Article 118034. https://doi.org/10.1016/j.foreco.2020.118034

  • Caldwell MM (1968) Solar ultraviolet radiation as an ecological factor for alpine plants. Ecol Monogr 38:243–268

    Article  Google Scholar 

  • Carr DE, Dudash MR (2003) Recent approaches into the genetic basis of inbreeding depression in plants. Phil Trans R Soc Lond B 358:1071–1084

    Article  CAS  Google Scholar 

  • Castañeda M, González M (2008) Statistical analysis of the precipitation trends in the Patagonian region in southern South America. Atmósfera 21:303–317

    Google Scholar 

  • CIMA (2015) Cambio climático en Argentina; tendencias y proyecciones. Tercera Comunicación Nacional de la República Argentina a la Convención Marco de las Naciones Unidas sobre Cambio Climático. http://3cn.cima.fcen.uba.ar/informe/ModClim_Indice.pdf

  • Clewell AF (2000) Restoring for natural authenticity. Ecol Restor 18:216–217

    Article  Google Scholar 

  • Crego P (1999) Variación genética en el comportamiento fenológico y el crecimiento juvenil de progenies puras e híbridas de raulí, Nothofagus nervosa (Phil.) Dim. et Mil. Graduate thesis. Fac. Cs. Biológicas, CRUB, Universidad Nacional del Comahue

    Google Scholar 

  • Cuevas JG, Arroyo MTK (1999) Absence of a persistent seed bank in Nothofagus pumilio (Fagaceae) in Tierra del Fuego, Chile. Rev Chil Hist Nat 1:73–82

    Google Scholar 

  • Donohue K, Rubio de Casas R, Burghardt L, Kovach K, Willis CG (2010) Germination, postgermination adaptation and species ecological ranges. Annu Rev Ecol Evol Syst 41:293–219. https://doi.org/10.1146/annurev-ecolsys-102209-144715

    Article  Google Scholar 

  • Donohue K, Burghardt LT, Runcie D, Bradford KJ, Schmitt J (2015) Applying developmental threshold models to evolutionary ecology. Trends Ecol Evol 30:66–77

    Article  PubMed  Google Scholar 

  • Fady B, Cottrell J, Ackzell L, Alía R, Muys B, Prada A, González-Martínez SC (2015) Forests and global change: what can genetics contribute to the major forest management and policy challenges of the twenty-first century? Reg Environ Chang 16:927–939

    Article  Google Scholar 

  • Falk DA, Knapp EE, Guerrant EO (2001) An introduction to restoration genetics. Society for Ecological Restoration. U.S. Environmental Protection Agency, p 33

    Google Scholar 

  • Fenster CB, Dudash MR (1994) Genetic considerations for plant population restoration and conservation. In: Bowles ML, Whelan CJ (eds) Restoration of endangered species. Cambridge University Press

    Google Scholar 

  • Fenster CB, Galloway LF (2000) Inbreeding and outbreeding depression in natural populations of Chamaecrista fasciculata (Fabaceae). Conserv Biol 14:1406–1412

    Article  Google Scholar 

  • Fisichelli NA, Frelich LE, Reich PB (2013) Temperate tree expansion into adjacent boreal forest patches facilitated by warmer temperatures. Ecography (Cop) 37:152–161

    Article  Google Scholar 

  • Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR, Fenster CB (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475

    Article  PubMed  Google Scholar 

  • Gallo LA, Marchelli P, Crego P, Oudkerk L, Izquierdo F, Breitembücher A et al. (2000) Distribución y variación genética en características seminales y adaptativas de poblaciones y progenies de raulí en Argentina. In: Domesticación y Mejora Genética de raulí y roble. Universidad Austral de Chile-Instituto Forestal, Valdivia, pp 133–156

    Google Scholar 

  • Garibaldi LA, Kitzberger T, Chaneton EJ (2011) Environmental and genetic control of insect abundance and herbivory along a forest elevational gradient. Oeocologia 167:117–129

    Article  Google Scholar 

  • Gavier-Pizarro GI, Kuemmerle T, Hoyos LE, Stewart SI, Huebner CD, Keuler NS, Radeloff VC (2012) Monitoring the invasion of an exotic tree (Ligustrum lucidum) from 1983 to 2006 with Landsat satellite data and a support vector machine in Córdoba, Argentina. Remote Sens Environ 122:134–145

    Article  Google Scholar 

  • Giordano CV, Sánchez RA, Austin AT (2006) Gregarious flowering of bamboo opens a red: far red window of opportunity for forest regeneration in a temperate forest of Patagonia. New Phytol 181:880–889

    Article  Google Scholar 

  • Green PT, Harms KE, Connell JH (2014) Nonrandom, diversifying processes are disproportionately strong in the smallest size classes of a tropical forest. Proc Natl Acad Sci U S A 111:18649–18654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grubb PJ (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol Rev 52:107–145

    Article  Google Scholar 

  • Hampe A, Pemonge MH, Petit RJ (2013) Efficient mitigation of founder effects during the establishment of a leading edge oak population. Proc R Soc London Ser B Biol Sci 280:20131070

    Google Scholar 

  • Ipinza R, Gutiérrez B, Muller-Using S, Molina MP, Gonzalez J (2019) La migración asistida de la Araucaria araucana, plan operacional. Ciencia e Investigación Forestal INFOR Chile 25:75–88

    Google Scholar 

  • Johnson GR, Sorensen FC, St Clair JB, Cronn RC (2004) Pacific Northwest forest tree seed zones: a template for native plants? Nat Plants J 5:131–140

    Article  Google Scholar 

  • Jump AS, Mátyás C, Peñuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol 24:694–701

    Article  PubMed  Google Scholar 

  • Kitzberger T, Chaneton EJ, Caccia FD (2007) Indirect effects of prey swamping: differential seed predation during bamboo masting event. Ecology 88:2541–2554

    Article  PubMed  Google Scholar 

  • Körner C (2000) Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol Evol 15:513–514

    Article  Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Lawler JJ, Olden JD (2011) Reframing the debate over assisted colonization. Front Ecol Environ 9:569–574

    Article  Google Scholar 

  • Lazzarin LC, da Silva AC, Higuchi P, Souza K, Perin JE, Pereira Cruz A (2015) Biological invasión by Hovenia dulcis Thunb. in forest fragments in upper-Uruguay region, Brazil. Rev Árvore 39:1007–1017

    Article  Google Scholar 

  • Lesica P, Allendorf FW (1999) Ecological genetics and the restoration of plant communities: mix or match? Restor Ecol 7:42–50

    Article  Google Scholar 

  • Lexer C, Heinze B, Alia R, Rieseberg LH (2004) Hybrid zones as a tool for identifying adaptive genetic variation in outbreeding forest trees: lessons from wild annual sunflowers (Helianthus spp.). For Ecol Manag 197:49–64

    Article  Google Scholar 

  • Lloyd AH, Bunn AG, Berner L (2011) A latitudinal gradient in tree growth response to climate warming in the Siberian taiga. Glob Chang Biol 17:1935–1945

    Article  Google Scholar 

  • Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1055

    Article  CAS  PubMed  Google Scholar 

  • López Lauenstein D, Vega C, Verga A, Fornes L, Saravia P, Feyling M, et al. (2019) Evaluación de diez orígenes de Algarrobo para establecer sistemas silvopastoriles en el Chaco semiárido argentino. In: Proceedings of X Congreso Internacional sobre Sistemas Silvopastoriles. Asunción, Sept. 24–26. Editorial CIPAV, Cali

    Google Scholar 

  • Máliš F, Kopecký M, Petřík P, Vladovič J, Merganič J, Vida T (2016) Life stage, not climate change, explains observed tree range shifts. Glob Chang Biol 22:1904–1914

    Article  PubMed  PubMed Central  Google Scholar 

  • Marchelli P, Thomas E, Azpilicueta MM, Van Zonneveld M, Gallo LA (2017) Integrating genetics and suitability modelling to bolster climate change adaptation planning in Patagonian Nothofagus forests. Tree Genet Genomes 13:119

    Article  Google Scholar 

  • McKay JK, Christian CE, Harrison S, Rice KJ (2005) “How local is local?” A review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13:432–440

    Article  Google Scholar 

  • McLachlan JS, Hellmann JJ, Schwartz MW (2007) A framework for debate of assisted migration in an era of climate change. Conserv Biol 21:297–302

    Article  PubMed  Google Scholar 

  • Micou AP (2003) Riesgo ambiental por invasiones biológicas en una zona con alto valor de conservación. Graduate thesis, Facultad de Fiolosofía y Letras, Universidad de Buenos Aires, p 157

    Google Scholar 

  • Orellana IA, Raffaele E (2010) The spread of the exotic conifer Pseudotsuga menziesii in Austrocedrus chilensis forests and shrublands in northwestern Patagonia, Argentina. NZ J Forestry Sci 40:199–209

    Google Scholar 

  • Pastorino MJ, Gallo LA (2009) Preliminary operational genetic management units of a highly fragmented forest tree species of southern South America. For Ecol Manag 257:2350–2358

    Article  Google Scholar 

  • Pastorino MJ, Aparicio AG, Azpilicueta MM (2015) Regiones de Procedencia del Ciprés de la Cordillera y bases conceptuales para el manejo de sus recursos genéticos en Argentina. Ediciones INTA, Buenos Aires, 107 pp

    Google Scholar 

  • Pastorino MJ, Aparicio AG, Azpilicueta MM, Soliani C, Marchelli P (2017) Genética de la restauración: tendiendo puentes entre la investigación y la gestión. In: Zuleta G, Rovere A, Mollard F (eds) SIACRE-2015, Aportes y Conclusiones: Tomando Decisiones para Revertir la Degradación Ambiental. Vázquez Mazzini Editores, Buenos Aires, pp 147–152, 240 pp

    Google Scholar 

  • Peterson AT (2006) Uses and requirements of ecological niche models and related distributional models. Biodivers Informatics 3:59–72

    Article  Google Scholar 

  • Ramirez-Villegas J, Jarvis A (2010) Downscaling global circulation model outputs: the delta method. Decision and policy analysis working paper no. 1

    Google Scholar 

  • Ricciardi A, Simberloff D (2009) Assisted colonization is not a viable conservation strategy. Trends Ecol Evol 24:248–253

    Article  PubMed  Google Scholar 

  • Richardson SJ, Allen RB, Whitehead D, Carswell FE, Ruscoe WA, Platt KH (2005) Climate and net carbon availability determine temporal patterns of seed production by Nothofagus. Ecology 86:972–981

    Article  Google Scholar 

  • Richardson DM, Hellmann JJ, McLachlan JS, Sax DF, Schwartz MW, Gonzalez P, Brennan E, Camacho A et al. (2009) Multidimensional evaluation of managed relocation. Proc Natl Acad Sci U S A 106:9721–9724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T et al. (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216

    Google Scholar 

  • Rusticucci M, Barrucand M (2004) Observed trends and changes in temperature extremes over Argentina. Am Meteorol Soc 17:4099–4107

    Google Scholar 

  • Sarasola MM, Rusch VE, Schlichter TM, Ghersa CM (2006) Invasión de coníferas forestales en áreas de estepa y bosque de ciprés de la cordillera en la región Patagónica. Ecol Austral 16:143–156

    Google Scholar 

  • Seddon PJ (2010) From reintroduction to assisted colonization: moving along the conservation translocation spectrum. Restor Ecol 18:796–802

    Article  Google Scholar 

  • Sittaro F, Paquette A, Messier C, Nock CA (2017) Tree range expansion in eastern North America fails to keep pace with climate warming at northern range limits. Glob Chang Biol 23:3292–3301

    Article  PubMed  Google Scholar 

  • Sola G, Attis Beltran H, Chauchard L, Gallo LA (2015) Efecto del manejo silvicultural sobre la regeneración de un bosque de Nothofagus dombeyi, N. alpina y N. obliqua en la Reserva Nacional Lanín (Argentina). Bosque 36:113–120

    Article  Google Scholar 

  • Sola G, El Mujtar V, Tsuda Y, Vendramin GG, Gallo LA (2016) The effect of silvicultural management on the genetic diversity of a mixed Nothofagus forest in Lanín natural reserve, Argentina. For Ecol Manag 363:11–20

    Article  Google Scholar 

  • Soliani C, Umaña F, Mondino VA, Thomas E, Pastorino M, Gallo LA, Marchelli P (2017) Zonas genéticas de lenga y ñire en Argentina : y su aplicación en la conservación y manejo de los recursos forestales. Ediciones INTA, Bariloche

    Google Scholar 

  • Suarez ML, Kitzberger T (2010) Differential effects of climate variability on forest dynamics along a precipitation gradient in northern Patagonia. J Ecol 98:1023–1034

    Article  Google Scholar 

  • Thomas E, Jalonen R, Loo J, Boshier D, Gallo L, Cavers S et al. (2014) Genetic considerations in ecosystem restoration using native tree species. For Ecol Manag 333:66–75

    Google Scholar 

  • Timbal J, Bonneau M, Landmann G, Trouvilliez J, Bouhot-Delduc L (2005) European non boreal conifer forests. In: Andersson FA (ed) Ecosystems of the world (6): coniferous forests. Elsevier, Amsterdam, pp 131–162

    Google Scholar 

  • Vander Mijnsbrugge K, Bischoff A, Smith B (2010) A question of origin: where and how to collect seed for ecological restoration. Basic Appl Ecol 11:300–311

    Article  Google Scholar 

  • Verga A, López-Lauenstein D, López C, Navall M, Joseau J, Gómez C et al. (2009) Caracterización morfológica de los algarrobos (Prosopis sp.) en las regiones fitogeográficas Chaqueña y Espinal norte de Argentina. Quebracho 17:31–40

    Google Scholar 

  • Vergara R (2000) Regiones de procedencia de N. alpina y N. obliqua. In: Ipinza R, Gutierrez B, Emhart V (eds) Domesticación y Mejora Genética de raulí y roble. Universidad Austral de Chile-Instituto Forestal, Valdivia

    Google Scholar 

  • Vergeer P, Sonderen E, Ouborg NJ (2004) Introduction strategies put to the test: local adaptation versus heterosis. Conserv Biol 18:812–821

    Article  Google Scholar 

  • Waltari E, Hijmans RJ, Peterson AT, Nyári ÁS, Perkins SL, Guralnick RP (2007) Locating Pleistocene refugia: comparing phylogeographic and ecological niche models predictions. PLoS One 2:e563

    Google Scholar 

  • Zamora-Rivera SV (2002) Efecto de la dominancia de las especies exóticas invasoras sobre la sucesión de bosques secundarios de las yungas argentinas. MSc thesis. Facultad de Agronomía, Universidad de Buenos Aires, p121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario J. Pastorino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pastorino, M.J., Marchelli, P., Arana, V., Aparicio, A.G. (2021). Questions, Perspectives and Final Considerations of Planting Native Species Under the Climate Change Conditioning. In: Pastorino, M.J., Marchelli, P. (eds) Low Intensity Breeding of Native Forest Trees in Argentina. Springer, Cham. https://doi.org/10.1007/978-3-030-56462-9_18

Download citation

Publish with us

Policies and ethics