Skip to main content

Monochromatic Random Waves for General Riemannian Manifolds

  • Chapter
  • First Online:
Frontiers in Analysis and Probability

Abstract

This is a survey article on some of the recent developments on monochromatic random waves defined for general Riemannian manifolds. We discuss the conditions needed for the waves to have a universal scaling limit, we review statistics for the size of their zero set and the number of their critical points, and we discuss the structure of their zero set as described by the diffeomorphism types and the nesting configurations of its components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Adler, J. Taylor, Random Fields and Geometry. Springer Monographs in Mathematics, vol. 115 (Springer, New York, 2009)

    Google Scholar 

  2. P. Bérard, Volume des ensembles nodaux des fonctions propres du laplacien. Semin. Theor. Spectr. Geom. 3, 1–9 (1984)

    Google Scholar 

  3. M. Berry, Regular and irregular semiclassical wavefunctions. J. Phys. A Math. Gen. 10(12), 2083 (1977)

    Google Scholar 

  4. V. Cammarota, D. Marinucci, A quantitative central limit theorem for the Euler-Poincaré characteristic of random spherical eigenfunctions. Ann. Probab. 46(6), 3188–3228 (2018)

    Article  MathSciNet  Google Scholar 

  5. V. Cammarota, I. Wigman, Fluctuations of the total number of critical points of random spherical harmonics. Stoch. Processes Their Appl. 127(12), 3825–3869 (2017)

    Article  MathSciNet  Google Scholar 

  6. V. Cammarota, D. Marinucci, I. Wigman, On the distribution of the critical values of random spherical harmonics. J. Geom. Anal. 26(4), 3252–3324 (2016)

    Article  MathSciNet  Google Scholar 

  7. Y. Canzani, B. Hanin, Scaling limit for the Kernel of the spectral projector and remainder estimates in the pointwise Weyl law. Anal. Partial Differ. Equ. 8(7), 1707–1731 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Y. Canzani, B. Hanin, Local Universality for zeros and critical points of monochromatic random waves (2016). Preprint, arXiv:1610.09438

    Google Scholar 

  9. Y. Canzani, B. Hanin, C ∞ scaling asymptotics for the spectral projector of the Laplacian. J. Geom. Anal. 28(1), 111–122 (2018)

    Article  MathSciNet  Google Scholar 

  10. Y. Canzani, P. Sarnak, Topology and nesting of the zero set components of monochromatic random waves. Commun. Pure Appl. Math. 72(2), 343–374 (2019)

    Article  MathSciNet  Google Scholar 

  11. F. Dalmao, I. Nourdin, G. Peccati, M. Rossi, Phase singularities in complex arithmetic random waves. Electron. J. Probab. 24, 1–45 (2019)

    Article  MathSciNet  Google Scholar 

  12. A. Enciso, D. Peralta-Salas, Submanifolds that are level sets of solutions to a second-order elliptic PDE. Adv. Math. 249, 204–249 (2013)

    Article  MathSciNet  Google Scholar 

  13. P. Erdös, R.R. Hall, On the angular distribution of Gaussian integers with fixed norm. Discrete Math. 200, 87–94 (1999) (Paul Erdös memorial collection)

    Google Scholar 

  14. D. Gayet, J. Welschinger, Betti numbers of random nodal sets of elliptic pseudo-differential operators (2014). Preprint, arXiv:1406.0934

    Google Scholar 

  15. D. Gayet, J. Welschinger, Expected topology of random real algebraic submanifolds. J. Inst. Math. Jussieu 14(04), 673–702 (2015)

    Article  MathSciNet  Google Scholar 

  16. D. Gayet, J. Welschinger, Universal components of random nodal sets. Commun. Math. Phys. 1–21 (2015). arXiv:1503.01582

    Google Scholar 

  17. L. Hörmander, The spectral function of an elliptic operator. Acta Math. 121(1), 193–218 (1968)

    Article  MathSciNet  Google Scholar 

  18. B. Keeler, A logarithmic improvement in the two point Weyl Law for manifolds without conjugate points (2019). Preprint, arXiv:1905.05136

    Google Scholar 

  19. M. Krishnapur, P. Kurlberg, I. Wigman, Nodal length fluctuations for arithmetic random waves. Ann. Math. 177, 699–737 (2013)

    Article  MathSciNet  Google Scholar 

  20. D. Marinucci, I. Wigman, The defect variance of random spherical harmonics. J. Phys. A Math. Theor. 44(35), 355206 (2011)

    Google Scholar 

  21. D. Marinucci, I. Wigman, On nonlinear functionals of random spherical eigenfunctions. Commun. Math. Phys. 327(3), 849–872 (2014)

    Article  MathSciNet  Google Scholar 

  22. D. Marinucci, G. Peccati, M. Rossi, I. Wigman, Non-universality of nodal length distribution for arithmetic random waves. Geom. Funct. Anal. 26(3), 926–960 (2016)

    Article  MathSciNet  Google Scholar 

  23. J. Marklof, S. O’Keefe, Weyl law and quantum ergodicity for maps with divided phase space. Nonlinearity 18, 277–304 (2005)

    Article  MathSciNet  Google Scholar 

  24. F. Mehler, Ueber die Vertheilung der statischen Elektricität in einem von zwei Kugelkalotten begrenzten Körper. J. Reine Angew. Math. 68, 134–150 (1868)

    MathSciNet  Google Scholar 

  25. J. Neuheisel, The asymptotic distribution of nodal sets on spheres. Diss. Johns Hopkins University, 2010

    Google Scholar 

  26. L. Nicolaescu, Critical sets of random smooth functions on products of spheres (2010). Preprint, arXiv:1008.5085

    Google Scholar 

  27. I. Nourdin, G. Pecatti, M. Rossi, Nodal statistics of planar random waves (2017). Preprint, arXiv:1708.02281

    Google Scholar 

  28. M. Rossi, Random nodal lengths and Wiener chaos (2018). Preprint, arXiv:1803.09716

    Google Scholar 

  29. Z. Rudnick, I. Wigman, On the volume of nodal sets for eigenfunctions of the Laplacian on the torus. Ann. Henri Poincare 9(1), 109–130 (2008)

    Article  MathSciNet  Google Scholar 

  30. P. Sarnak, I. Wigman, Topologies of nodal sets of random band-limited functions. Commun. Pure Appl. Math. 72(2), 275–342 (2019)

    Article  MathSciNet  Google Scholar 

  31. M. Sodin, F. Nazarov, Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions (2015). Preprint, arXiv:1507.02017

    Google Scholar 

  32. C. Sogge, S. Zelditch, Riemannian manifolds with maximal eigenfunction growth. Duke Math. J. 114(3), 387–437 (2002)

    Article  MathSciNet  Google Scholar 

  33. I. Wigman, On the distribution of the nodal sets of random spherical harmonics. J. Math. Phys. 50(1), 013521 (2009)

    Google Scholar 

  34. I. Wigman, Fluctuations of the nodal length of random spherical harmonics. Commun. Math. Phys. 298(3), 787–831 (2010)

    Article  MathSciNet  Google Scholar 

  35. S. Zelditch, On the rate of quantum ergodicity. II. Lower bounds. Commun. Partial Differ. Equ. 19(9–10), 1565–1579 (1994)

    Article  Google Scholar 

  36. S. Zelditch, Real and complex zeros of Riemannian random waves. Contemp. Math. 14, 321 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is very grateful to her collaborators B. Hanin and P. Sarnak. The author would also like to thank the Alfred P. Sloan Foundation for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaiza Canzani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Canzani, Y. (2020). Monochromatic Random Waves for General Riemannian Manifolds. In: Anantharaman, N., Nikeghbali, A., Rassias, M.T. (eds) Frontiers in Analysis and Probability. Springer, Cham. https://doi.org/10.1007/978-3-030-56409-4_1

Download citation

Publish with us

Policies and ethics