Abstract
This is a survey article on some of the recent developments on monochromatic random waves defined for general Riemannian manifolds. We discuss the conditions needed for the waves to have a universal scaling limit, we review statistics for the size of their zero set and the number of their critical points, and we discuss the structure of their zero set as described by the diffeomorphism types and the nesting configurations of its components.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
R. Adler, J. Taylor, Random Fields and Geometry. Springer Monographs in Mathematics, vol. 115 (Springer, New York, 2009)
P. Bérard, Volume des ensembles nodaux des fonctions propres du laplacien. Semin. Theor. Spectr. Geom. 3, 1–9 (1984)
M. Berry, Regular and irregular semiclassical wavefunctions. J. Phys. A Math. Gen. 10(12), 2083 (1977)
V. Cammarota, D. Marinucci, A quantitative central limit theorem for the Euler-Poincaré characteristic of random spherical eigenfunctions. Ann. Probab. 46(6), 3188–3228 (2018)
V. Cammarota, I. Wigman, Fluctuations of the total number of critical points of random spherical harmonics. Stoch. Processes Their Appl. 127(12), 3825–3869 (2017)
V. Cammarota, D. Marinucci, I. Wigman, On the distribution of the critical values of random spherical harmonics. J. Geom. Anal. 26(4), 3252–3324 (2016)
Y. Canzani, B. Hanin, Scaling limit for the Kernel of the spectral projector and remainder estimates in the pointwise Weyl law. Anal. Partial Differ. Equ. 8(7), 1707–1731 (2015)
Y. Canzani, B. Hanin, Local Universality for zeros and critical points of monochromatic random waves (2016). Preprint, arXiv:1610.09438
Y. Canzani, B. Hanin, C ∞ scaling asymptotics for the spectral projector of the Laplacian. J. Geom. Anal. 28(1), 111–122 (2018)
Y. Canzani, P. Sarnak, Topology and nesting of the zero set components of monochromatic random waves. Commun. Pure Appl. Math. 72(2), 343–374 (2019)
F. Dalmao, I. Nourdin, G. Peccati, M. Rossi, Phase singularities in complex arithmetic random waves. Electron. J. Probab. 24, 1–45 (2019)
A. Enciso, D. Peralta-Salas, Submanifolds that are level sets of solutions to a second-order elliptic PDE. Adv. Math. 249, 204–249 (2013)
P. Erdös, R.R. Hall, On the angular distribution of Gaussian integers with fixed norm. Discrete Math. 200, 87–94 (1999) (Paul Erdös memorial collection)
D. Gayet, J. Welschinger, Betti numbers of random nodal sets of elliptic pseudo-differential operators (2014). Preprint, arXiv:1406.0934
D. Gayet, J. Welschinger, Expected topology of random real algebraic submanifolds. J. Inst. Math. Jussieu 14(04), 673–702 (2015)
D. Gayet, J. Welschinger, Universal components of random nodal sets. Commun. Math. Phys. 1–21 (2015). arXiv:1503.01582
L. Hörmander, The spectral function of an elliptic operator. Acta Math. 121(1), 193–218 (1968)
B. Keeler, A logarithmic improvement in the two point Weyl Law for manifolds without conjugate points (2019). Preprint, arXiv:1905.05136
M. Krishnapur, P. Kurlberg, I. Wigman, Nodal length fluctuations for arithmetic random waves. Ann. Math. 177, 699–737 (2013)
D. Marinucci, I. Wigman, The defect variance of random spherical harmonics. J. Phys. A Math. Theor. 44(35), 355206 (2011)
D. Marinucci, I. Wigman, On nonlinear functionals of random spherical eigenfunctions. Commun. Math. Phys. 327(3), 849–872 (2014)
D. Marinucci, G. Peccati, M. Rossi, I. Wigman, Non-universality of nodal length distribution for arithmetic random waves. Geom. Funct. Anal. 26(3), 926–960 (2016)
J. Marklof, S. O’Keefe, Weyl law and quantum ergodicity for maps with divided phase space. Nonlinearity 18, 277–304 (2005)
F. Mehler, Ueber die Vertheilung der statischen Elektricität in einem von zwei Kugelkalotten begrenzten Körper. J. Reine Angew. Math. 68, 134–150 (1868)
J. Neuheisel, The asymptotic distribution of nodal sets on spheres. Diss. Johns Hopkins University, 2010
L. Nicolaescu, Critical sets of random smooth functions on products of spheres (2010). Preprint, arXiv:1008.5085
I. Nourdin, G. Pecatti, M. Rossi, Nodal statistics of planar random waves (2017). Preprint, arXiv:1708.02281
M. Rossi, Random nodal lengths and Wiener chaos (2018). Preprint, arXiv:1803.09716
Z. Rudnick, I. Wigman, On the volume of nodal sets for eigenfunctions of the Laplacian on the torus. Ann. Henri Poincare 9(1), 109–130 (2008)
P. Sarnak, I. Wigman, Topologies of nodal sets of random band-limited functions. Commun. Pure Appl. Math. 72(2), 275–342 (2019)
M. Sodin, F. Nazarov, Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions (2015). Preprint, arXiv:1507.02017
C. Sogge, S. Zelditch, Riemannian manifolds with maximal eigenfunction growth. Duke Math. J. 114(3), 387–437 (2002)
I. Wigman, On the distribution of the nodal sets of random spherical harmonics. J. Math. Phys. 50(1), 013521 (2009)
I. Wigman, Fluctuations of the nodal length of random spherical harmonics. Commun. Math. Phys. 298(3), 787–831 (2010)
S. Zelditch, On the rate of quantum ergodicity. II. Lower bounds. Commun. Partial Differ. Equ. 19(9–10), 1565–1579 (1994)
S. Zelditch, Real and complex zeros of Riemannian random waves. Contemp. Math. 14, 321 (2009)
Acknowledgements
The author is very grateful to her collaborators B. Hanin and P. Sarnak. The author would also like to thank the Alfred P. Sloan Foundation for their support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Canzani, Y. (2020). Monochromatic Random Waves for General Riemannian Manifolds. In: Anantharaman, N., Nikeghbali, A., Rassias, M.T. (eds) Frontiers in Analysis and Probability. Springer, Cham. https://doi.org/10.1007/978-3-030-56409-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-56409-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-56408-7
Online ISBN: 978-3-030-56409-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)