Skip to main content

Microbiome and Chronic Pelvic Pain

  • Chapter
  • First Online:
Chronic Pelvic Pain and Pelvic Dysfunctions

Abstract

Visceral pain is one of the underlying causes of chronic pelvic pain. Intestinal microbiota is the most complex microbial ecosystem on the planet Earth, being characterized not only by an incredible number of species and strains of bacteria but also by viruses and fungi. The microbiota ability to change in response to several endogenous and exogenous factors, such as age, diet, geography, lifestyle, intake of drugs, and others, makes that its balance, richness, and stability are among the most important factors for the human health. Dysbiosis, i.e., the unbalance of gut microbiota, can induce visceral pain both altering modulation of gut–brain axis humoral mechanisms and decreasing volume and changing consistency of intestinal intraluminal content so generating dysmotility phenomena. Evidences for a role of probiotics, particularly if having well-defined targets, are very convincing. There is a rationale for speculating a prospect for a fecal microbiota transplantation employment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steege JF, Metzger DA, Levy BS, editors. Chronic pelvic pain. An integrated approach. Philadelphia, PA: W.B. Saunders Company; 1998.

    Google Scholar 

  2. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14:e1002533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Carding SR, Davis N, Hoyles L. Review article: the human intestinal virome in health and disease. Aliment Pharmacol Ther. 2017;46:800–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Iliev ID, Leonardi I. Fungal dysbiosis: immunity and interactions at mucosal barriers. Nat Rev Immunol. 2017;17:635–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Postler TS, Ghosh S. Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metab. 2017;26:110–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Owyang C, Wu GD. The gut microbiome in health and disease. Gastroenterology. 2014;146:1433–6.

    Article  PubMed  Google Scholar 

  7. Brubaker L, Wolfe AJ. The new world of the urinary microbiome in women. Am J Obstet Gynecol. 2015;213:644–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schneeweiss J, Koch M, Umek W. The human urinary microbiome and how it relates to urogynecology. Int Urogynecol J. 2016;27:1307–12.

    Article  PubMed  Google Scholar 

  9. Antunes-Lopes T, Vale L, Coelho AM, et al. The role of urinary microbiota in lower urinary tract dysfunction: a systematic review. Eur Urol Focus. 2018;27:S2405–4569.

    Google Scholar 

  10. Castillo DJ, Rifkin RF. Cowan DA et al the healthy human blood microbiome: fact or fiction? Front Cell Infect Microbiol. 2019;9:148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Candela M, Biagi E, Maccaferri S, Turroni S, Brigidi P. Intestinal microbiota is a plastic factor responding to environmental changes. Trends Microbiol. 2012;20:385–91.

    Article  CAS  PubMed  Google Scholar 

  12. Sboner A, Mu XJ, Greenbaum D, et al. The real cost of sequencing: higher than you think! Genome Biol. 2011;12:125.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Turroni S, Brigidi P, Cavalli A, Candela M. Microbiota-host transgenomic metabolism, bioactive molecules from the inside. J Med Chem. 2018;61:47–61.

    Article  CAS  PubMed  Google Scholar 

  15. Wishart DS, Tzur D, Knox C, et al. HMDB: the human metabolome database. Nucleic Acids. 2007;35:D521–6.

    Article  CAS  Google Scholar 

  16. Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K. Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci. 2014;34(46):15490–6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 2015;17(5):565–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ursell LK, Haiser HJ, Van Treuren W, et al. The intestinal metabolome: an intersection between microbiota and host. Gastroenterology. 2014;146:1470–6.

    Article  CAS  PubMed  Google Scholar 

  19. Kostic AD, Ramnik JX, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014;146:1489–99.

    Article  CAS  PubMed  Google Scholar 

  20. Shin A, Preidis GA, Shulman R, et al. The gut microbiome in adult and pediatric functional gastrointestinal disorders. Clin Gastroenterol Hepatol. 2019;17:256–74.

    Article  CAS  PubMed  Google Scholar 

  21. Duvallet C, Gibbons SM, Gurry T, et al. Meta-analysis of gut microbiome studies identifies disease-specific and shared response. Nat Commun. 2017;8:1784–883.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lozupone CA, Stombaugh J, Gonzales A, et al. Meta-analyses of studies of the human microbiota. Genome Res. 2013;23:1704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Biagi E, Franceschi C, Rampelli S, et al. Gut microbiota and extreme longevity. Curr Biol. 2016;26:1480–5.

    Article  CAS  PubMed  Google Scholar 

  25. Santoro A, Ostan R, Candela M, et al. Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell Mol Life Sci. 2018;75:129–48.

    Article  CAS  PubMed  Google Scholar 

  26. Kau AL, Ahern PP, Griffin NW, et al. Human nutrition, the gut microbiome and the immune system. Nature. 2012;474:327–36.

    Article  CAS  Google Scholar 

  27. Song M, Chan AT. Environmental factors, gut microbiota, and colorectal cancer prevention. Clin Gastroenterol Hepatol. 2019;17:275–89.

    Article  CAS  PubMed  Google Scholar 

  28. De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65:1812–21.

    Article  PubMed  CAS  Google Scholar 

  29. Sonnenburg ED, Smits SA, Tikhonov M, et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529:212–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goldszmind RS, Trinchieri G. The price of immunity. Nat Immunol. 2012;13:932–8.

    Article  CAS  Google Scholar 

  31. Kriss M, Hazleton KZ, Nusbacher NM, et al. Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr Opin Microbiol. 2018;44:34–40.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Freedman SN, Shahi SK, Mangalam AK. The “gut feeling”: breaking down the role of the gut microbiome in multiple sclerosis. Neurotherapeutics. 2018;15:109–25.

    Article  PubMed  Google Scholar 

  33. Jiang C, Li G, Huang P, et al. The gut microbiota and Alzheimer’s disease. J Alzheimers Dis. 2017;58:1–15.

    Article  PubMed  CAS  Google Scholar 

  34. Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging. 2017;49:60–8.

    Article  CAS  PubMed  Google Scholar 

  35. Sampson TR, Debelius JW, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 2016;167:1469–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behavior. Net Rev Neurosci. 2012;13:701–12.

    Article  CAS  Google Scholar 

  37. Vuong HE, Hsiao EY. Emerging roles for the gut microbiome in autism spectrum disorder. Biol Psychiatry. 2017;81:411–23.

    Article  PubMed  Google Scholar 

  38. Aarts E, Ederveen THA, Naaijen J, et al. Gut microbiome in ADHD and its relation to neural reward anticipation. PLoS One. 2017;12:e0183509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Xu R, Wu B, Liang J, et al. Altered gut microbiota and mucosal immunity in patients with schizophrenia. Brain Behav Immun. 2019; https://doi.org/10.1016/j.bbi.2019.06.039. pii: S0889-1591(19)30080-7. [Epub ahead of print]

  40. Kelly JR, Borre Y, O’Brien C, et al. Transferring the blues: depression-associated gut microbiota induces neuro-behavioural changes in the rat. J Psychiatry Res. 2016;82:109–18.

    Article  Google Scholar 

  41. Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry. 2016;21:786–96.

    Article  CAS  PubMed  Google Scholar 

  42. Evrensel A, Ceylan ME. Fecal microbiota transplantation and its usage in neuropsychiatric disorders. Clin Psychopharmacol Neurosci. 2016;14:231–7.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hollister EB, Gao C, Versalovic C. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology. 2014;146:1449–58.

    Article  PubMed  Google Scholar 

  44. Valles-Colomer M, Falony G, Darzi Y, et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol. 2019;4:623–32.

    Article  CAS  PubMed  Google Scholar 

  45. Osadchiy V, Martin CR, Mayer EA. The Gut-Brain Axis and the microbiome: mechanisms and clinical implications. Clin Gastroenterol Hepatol. 2019;17:322–32.

    Article  CAS  PubMed  Google Scholar 

  46. Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019;16:35–56.

    Article  CAS  PubMed  Google Scholar 

  47. Tilg H, Moschen AR. Food, immunity, and the microbiome. Gastroenterology. 2015;148:1107–19.

    Article  PubMed  Google Scholar 

  48. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.

    Article  PubMed  Google Scholar 

  49. Sharpton SR, Ajmera V, Loomba R. Emerging role of the gut microbiome in nonalcoholic fatty liver disease: from composition to function. Clin Gastroenterol Hepatol. 2019;17:296–306.

    Article  CAS  PubMed  Google Scholar 

  50. Crouzet L, Gaultier E, Del’Homme C, et al. The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota. Neurogastroenterol Motil. 2013;25:e272–82.

    Article  CAS  PubMed  Google Scholar 

  51. Rea K, O’Mahony SM, Dinan TG, et al. The role of the gastrointestinal microbiota in visceral pain: Springer International Publishing.: Handbook of Experimental Pharmacology; 2016.

    Google Scholar 

  52. Shankar V, Homer D, Rigsbee L, et al. The networks of human gut microbe-metabolite associations are different between health and irritable bowel syndrome. ISME J. 2015;9:1899–903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Simren M, Barbara G, Flint HJ, et al. Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut. 2013;62:159–76.

    Article  PubMed  Google Scholar 

  54. Riba A, Olier M, Lacroix-Lamande S, et al. Paneth cells defects induce microbiota dysbiosis in mice and promote visceral hypersensitivity. Gastroenterology. 2017;153:1592–606. e2

    Article  Google Scholar 

  55. O’Mahony SM, Felice VD, Nally K, et al. Disturbances of the gut microbiota in early life selectively affects visceral pain in adulthood without impactive ot anxiety related behaviors in male rats. Neuroscience. 2014;277:885–901.

    Article  PubMed  CAS  Google Scholar 

  56. Rousseaux C, Thuru X, Gelot A, et al. Lactubacillus acidophilus modulates intestinal pain and induces opiod and cannabinoid receptors. Nat Med. 2007;13:35–7.

    Article  CAS  PubMed  Google Scholar 

  57. Ait-Belgnaoui A, Eutamene H, Houdeau E, et al. Lactobacillus farciminis treatment attenuates stress-induced overexpression of Fos protein in spinal and supraspinal sites after colorectal distension in rats. Neurogastroenterol Motil. 2009;21:567–73.

    Article  CAS  PubMed  Google Scholar 

  58. Kunze WA, Mao YK, Wang B, et al. Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J Cell Mol Med. 2009;13:2261–70.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Perez-Burgos A, Wang L, McVey Neufeld KA, et al. The TRPV1 channel in rodents is a major target for antinociceptive effect of the probiotic lactobacillus reuteri DSM 17938. J Physiol. 2015;593:3943–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ait-Belgnaoui A, Han W, Lamine F, et al. Lactobacillus farciminis treatment suppresses stress induced visceral hypersensitivity: a possible action through interaction with epithelial cell cytoskeleton contraction. Gut. 2006;55:1090–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pokusaeva K, Johnson C, Luk B, et al. GABA-producing Bifidobactrium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol Motil. 2017;29:e12904.

    Article  CAS  Google Scholar 

  62. Agostini S, Goubern M, Tondereau V, et al. A marketed fermented dairy product containing Bifidobacterium lactis CNCM I-2494 suppresses gut hypersensitivity and colonic barrier disruption induced by acute stress in rats. Neurogastroenterol Motil. 2012;24:376–e172.

    Article  CAS  PubMed  Google Scholar 

  63. McKernan DP, Fitzgerald P, Dinan TG, et al. The probiotic Bifidobacterium infantis 35624 displays visceral antinociceptive effects in the rat. Neurogastroenterol Motil. 2010;22:1029–35.

    Article  CAS  PubMed  Google Scholar 

  64. Bourdu S, Dapoigny M, Chapuy E, et al. Rectal instillation of butyrate provides a novel clinically relevant model of noninflammatory colonic hypersensitivity in rats. Gastroenterology. 2005;128:1996–2008.

    Article  CAS  PubMed  Google Scholar 

  65. Vanhoutvin SA, Troost FJ, Kilkens TO, et al. The effects of butyrate enemas on visceral perception in healthy volunteers. Neurogastroenterol Motil. 2009;21:952-e76.

    Article  PubMed  CAS  Google Scholar 

  66. Kundu P, Blacher E, Elinav E, et al. Our gut microbiome: the evolving inner self. Cell. 2017;171:1481–93.

    Article  CAS  PubMed  Google Scholar 

  67. Spencer NJ, Dinning PG, Brookes SJ, et al. Insights into the mechanisms underlying colonic motor patterns. J Physiol. 2016;594:4099–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dinning PG, Wiklendt L, Omari T, et al. Neural mechanisms of peristalsis in the isolated rabbit distal colon: a neuromechanical loop hypothesis. Front Neurosci. 2014;8:1–14.

    Article  Google Scholar 

  69. Tonini M, Spelta V, De Ponti F, et al. Tachykinin-dependent and –indipendent components of peristalsis in the Guinea pig isolated distal colon. Gastroenterology. 2001;120:938–45.

    Article  CAS  PubMed  Google Scholar 

  70. Costa M, Wiklendt L, Simpson P, et al. Neuromechanical factors involved in the formation and propulsion of fecal pellets in the Guinea-pig colon. Neurogastroenterol Motil. 2015;27:1466–77.

    Article  CAS  PubMed  Google Scholar 

  71. Vandeputte D, Falony G, Vieira-Silva S, Tito RY, Joossens M, Raes J. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut. 2016;65:57–62.

    Article  CAS  PubMed  Google Scholar 

  72. Sant’Anna MSL, Ferreira CLLF. Can intestinal constipation be modulated by prebiotics, probiotics and Symbiotics? Food Nutr Sci. 2014;5:1106–13.

    Google Scholar 

  73. Quigley EMM. The enteric microbiota in the pathogenesis and management of constipation. Best Pract Res Clin Gastroenterol. 2011;25:119–26.

    Article  CAS  PubMed  Google Scholar 

  74. Bazzocchi G, Giovannini T, Giussani C, et al. Effect of a symbiotic preparation on symptoms, stool consistency, intestinal transit time and gut microbiota in patients with severe functional constipation: a double blind, controlled trial. Tech Coloproctol. 2014;18:945–53.

    Article  CAS  PubMed  Google Scholar 

  75. De Giorgio R, Blandizzi C. Targeting enteric neuroplasticity: diet and bugs as new key factors. Gastroenterology. 2010;138:1663–6.

    Article  PubMed  CAS  Google Scholar 

  76. Xu M, Wang J, Wang N, et al. The efficacy and safety of the probiotic bacterium lactobacillus Reuteri DSM 17938 for infantile colic: a meta-analysis of randomized controlled trials. PLoS One. 2015;10:e0141445.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Harb T, Matsuyama M, David M, et al. Infant colic-what works: a systematic review of interventions for breast-fed infants. J Pediatr Gastroenterol Nutr. 2016;62:668–86.

    Article  PubMed  Google Scholar 

  78. Partty A, Lehtonen L, Kalliomaki M, et al. Probiotic lactobacillus rhamnosus GG therapy and microbiological programming in infantile colic: a randomized, controlled trial. Pediatr Res. 2015;78:470–5.

    Article  CAS  PubMed  Google Scholar 

  79. Kianifar H, Ahanchian H, Grover Z, et al. Synbiotic in the management of infantile colic: a randomized controlled trial. J Paediatr Child Health. 2014;50:801–5.

    Article  PubMed  Google Scholar 

  80. Cammarota G, Ianiro G, Tilg H, et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017;66:569–80.

    Article  PubMed  Google Scholar 

  81. Borody TJ, Khoruts A. Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol. 2012;9:88–96.

    Article  CAS  Google Scholar 

  82. Rossen NG, Fuentes S, van der Spek MJ, et al. Findings from a randomized controlled trial of fecal transplantation for the patients with ulcerative colitis. Gastroenterology. 2015;149:110–8.

    Article  PubMed  Google Scholar 

  83. Paramsothy S, Kamm MA, Kaakoush NO, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomized placebo-controlled trial. Lancet. 2017;389:1218–118.

    Article  PubMed  Google Scholar 

  84. Millan B, Laffin M, Madsen K. Fecal microbiota transplantation: beyond Clostridium difficile. Curr Infect Dis Rep. 2017;19:31.

    Article  PubMed  Google Scholar 

  85. Baja JS, Kassam Z, Fagan A, et al. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology. 2017;66:1727–38.

    Article  CAS  Google Scholar 

  86. Johnsen PH, Hilpusch F, Cavanagh JP, et al. Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomized, placebo-controlled, parallel-group, single-Centre trial. Lancet Gastroenterol Hepatol. 2018;3:17–24.

    Article  PubMed  Google Scholar 

  87. Borody TJ, Warren EF, Leis SM, et al. Bacteriotherapy using fecal flora: toying with human motions. J Clin Gastroenterol. 2004;38:475–83.

    Article  PubMed  Google Scholar 

  88. Mangiola F, Ianiro G, Franceschi F, et al. Gut microbiota in autism and mood disorders. World J Gastroenterol. 2016;22:361–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kootte RS, Levin E, Salojarvi J, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 2017;26:611–9.

    Article  CAS  PubMed  Google Scholar 

  90. Mayer EA, Knight R, Mazmanian SK, et al. Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci. 2014;34:15490–6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The Authors are indebted to Dr. Cecilia Baroncini, Scientific Office of the Montecatone Rehabilitation Institute, for the secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Bazzocchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bazzocchi, G., Balloni, M., Turroni, S. (2021). Microbiome and Chronic Pelvic Pain. In: Giammò, A., Biroli, A. (eds) Chronic Pelvic Pain and Pelvic Dysfunctions. Urodynamics, Neurourology and Pelvic Floor Dysfunctions. Springer, Cham. https://doi.org/10.1007/978-3-030-56387-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56387-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56386-8

  • Online ISBN: 978-3-030-56387-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics