Skip to main content

Crocodilians Are Promiscuous But Not to the Benefit of Heterozygosity

  • Chapter
  • First Online:
Conservation Genetics of New World Crocodilians
  • 277 Accesses

Abstract

Crocodilian mating systems are complex but molecular genetics is providing some of the tools necessary to begin their unravelling. The most significant unravelling has been the widespread occurrence of multiple paternity (more than one sire for a clutch of eggs) across the global crocodilian species. The advantages of this strategy are still being debated and may differ across the different species, being dependent on factors such as population density and habitat availability at the individual population level. This chapter reviews the available literature outlining the impact other complexities such as nest site selection, the potential for communal nesting and “alloprotection” (non-biological female exhibiting nest guarding of conspecific eggs) could have on defining the mating strategies of crocodilians. However, it is argued that any advantage of genetic gain, genetic variability or inbreeding avoidance that might achieved by multiple paternity is overcome by low embryo and offspring survival leading to low recruitment rates into the adult breeding population. The limitations of experimental design are also discussed which may be leading to upwardly biased estimates of hypothetical sire numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allsteadt J (1994) Nesting ecology of Caiman crocodilus in Caño Negro, Costa Rica. J Herpetol 28(1):12–19

    Google Scholar 

  • Amavet P, Rosso E, Markariani R et al (2008) Microsatellite DNA markers applied to detection of multiple paternity in Caiman latirostris in Santa Fe, Argentina. J Exp Zool A Ecol Genet Physiol 309(10):637–642

    Article  CAS  PubMed  Google Scholar 

  • Amavet PS, Vilardi JC, Rueda EC et al (2012) Mating system and population analysis of the broad-snouted caiman (Caiman latirostris) using microsatellite markers. Amphibia-Reptilia 33(1):83–93

    Article  Google Scholar 

  • Bagwill A, Sever DM, Else RM (2009) Seasonal variation of the oviduct of the American alligator, Alligator mississippiensis. (Reptilia: Crocodylia). J Morphol 270:702–713

    Article  PubMed  Google Scholar 

  • Brien ML, Webb GJ, McGuinness K et al (2014) The relationship between early growth and survival of hatchling saltwater crocodiles (Crocodylus porosus) in Captivity. PLoS ONE 9(6):e100276

    Google Scholar 

  • Budd KM, Spotila JR, Mauger LA (2015) Preliminary mating analysis of American crocodiles, Crocodylus acutus, in Las Baulas, Santa Rosa, and Palo Verde National Parks, Guanacaste, Costa Rica. S Am J Herpetol 10(1):4–9

    Article  Google Scholar 

  • Campos Z (1993) Effect of habitat on survival of eggs and sex ratio of hatchlings of Caiman crocodilus yacare in the Pantanal, Brazil. J Herpetol 27(2):127–132

    Article  Google Scholar 

  • Cintra R (1988) Nesting ecology of the Paraguayan caiman (Caiman yacare) in the Brazilian Pantanal. J Herpetol 22(2):219–222

    Article  Google Scholar 

  • Ciocan H, Piña CI, Larriera A (2016) Population status of Caiman latirostris in the “Managed nature reserve El Fisco”. In: Crocodiles: Proceedings of the 24th working meeting of the IUCN/SSC crocodile specialist group. Gland, Switzerland, p 155

    Google Scholar 

  • Croshaw DA, Peters MB, Glenn TC (2009) Comparing the performance of analytical techniques for genetic parentage of half-sib progeny arrays. Genet Res 91(5):313–325

    Article  CAS  Google Scholar 

  • Cunha FAG, Barboza RSL, Rebêlo GH (2016) Communal nesting of Caiman crocodilus (Linneaus, 1758) (Crocodylia: Alligatoridae) in lower Amazon river floodplain, Brazil. Herpetol Notes 9:141–144

    Google Scholar 

  • Davenport M (1995) Evidence of possible sperm storage in the caiman, Paleosuchus palpebrosus. Herpetol Rev 26:14–15

    Google Scholar 

  • Davis LM, Glenn TC, Elsey RM et al (2000) Genetic structure of six populations of American alligators: a microsatellite analysis. In: Grigg G, Seebacher F, Franklin C (eds) Crocodilian biology and evolution. Surrey Beatty, Chipping Norton, pp 38–50

    Google Scholar 

  • Davis LM, Glenn TC, Elsey RM et al (2001) Multiple paternity and mating patterns in the American alligator, Alligator mississippiensis. Mol Ecol 10:1011–1024

    Article  CAS  PubMed  Google Scholar 

  • DeWoody AJ, DeWoody YD, Fiumera AC et al (2000) On the number of reproductives contributing to a half-sib progeny array. Genetical Research 75:95–105

    Google Scholar 

  • Egloff C, Labrosse A, Hebert C et al (2009) A nondestructive method for obtaining maternal DNA from avian eggshells and its application to embryonic viability determination in herring gulls (Larus argentatus). Mol Ecol Resour 9(1):19–27

    Article  CAS  PubMed  Google Scholar 

  • Elsey RM, Trosclair PL, Glenn TC (2008) Nest site fidelity in American alligators in a Louisiana coastal marsh. Southeast Nat 7(4):737–743

    Article  Google Scholar 

  • Finger JW, Thomson PC, Adams AL et al (2015) Reference levels for corticosterone and immune function in farmed saltwater crocodiles (Crocodylus porosus) hatchlings using current Code of Practice guidelines. Gen Comp Endocrinol 212:63–72

    Google Scholar 

  • Flanagan SP, Jones AG (2019) The future of parentage analysis: from microsatellites to SNPs and beyond. Mol Ecol 28(3):544–567

    Article  PubMed  Google Scholar 

  • Gist D, Bagwill A, Lance V et al (2008) Sperm storage in the oviduct of the American alligator. J Exp Zool A Ecol Genet Physiol 309:581–587

    Google Scholar 

  • Glenn TC, Dessauer HC, Braun MJ (1998) Characterization of microsatellite DNA loci in American alligators. Copeia 1998(3):591–601

    Article  Google Scholar 

  • Goodnight KF, Queller DC (1999) Computer Software for performing likelihood tests of pedigree relationship using genetic markers. Mol Ecol 8:1231–1234

    Google Scholar 

  • Green RE, Braun EL, Armstrong J et al (2014) Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346:125449

    Article  CAS  Google Scholar 

  • Isberg SR, Chen Y, Barker SG et al (2004) Analysis of microsatellites and parentage testing in saltwater crocodiles. J Hered 95(5):445–449

    Article  CAS  PubMed  Google Scholar 

  • Isberg SR, Thomson PC, Nicholas FW et al (2005a) Quantitative analysis of production traits in saltwater crocodiles (Crocodylus porosus): I. Reproduction traits. J Anim Breed Genet 122:361–369

    Article  CAS  PubMed  Google Scholar 

  • Isberg SR, Thomson PC, Nicholas FW et al (2005b) Quantitative analysis of production traits in saltwater crocodiles (Crocodylus porosus): II. Age at slaughter. J Anim Breed Genet 122:370–377

    Article  CAS  PubMed  Google Scholar 

  • Joanen T, McNease LL (1989) Ecology and physiology of nesting and early development of the American alligator. Am Zool 29:987–998

    Article  Google Scholar 

  • Jones AG (2005) GERUD 2.0: a computer program for the reconstruction of parental genotypes from half-sib progeny arrays with known or unknown parents. Mol Ecol Notes 5:708–711

    Article  CAS  Google Scholar 

  • Jones AG, Small CM, Paczolt KA et al (2010) A practical guide to methods of parentage analysis. Mol Ecol Resour 10:6–30

    Article  PubMed  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Google Scholar 

  • Karaket T, Poompuang S (2012) CERVUS vs. COLONY for successful parentage and sibship determinations in freshwater prawn Macrobrachium rosenbergii de Man. Aquaculture 324–325:307–311

    Article  CAS  Google Scholar 

  • Kushlan JA, Jacobsen T (1990) Environmental viability and the reproductive success of the Everglades alligator. J Herpetol 24(2):176–184

    Article  Google Scholar 

  • Lafferriere NAR, Antelo R, Alda F et al (2016) Multiple paternity in a reintroduced population of the Orinoco crocodile (Crocodylus intermedius) at the El Frío Biological Station, Venezuela. PLoS One 11(3):e0150245

    Article  CAS  Google Scholar 

  • Lance SL, Tuberville TD, Dueck L et al (2009) Multiyear multiple paternity and mate fidelity in the American alligator, Alligator mississippiensis. Mol Ecol 18(21):4508–4520

    Article  CAS  PubMed  Google Scholar 

  • Larriera A (2002) Caiman latirostris (Broad-snouted Caiman). Communal nesting. Herpetol Rev 3:33

    Google Scholar 

  • Lewis JL, FitzSimmons NN, Jamerlan ML et al (2013) Mating systems and multiple paternity in the estuarine crocodile (Crocodylus porosus). J Herpetol 47(1):24–33

    Article  Google Scholar 

  • Manolis SC, Webb GJW (compilers) (2016) Best management practices for crocodilian farming. Version 1. IUCN-SSC Crocodile Specialist Group, Darwin

    Google Scholar 

  • McVay JD, Rodriguez D, Rainwater TR et al (2008) Evidence of multiple paternity in Morelet’s Crocodile (Crocodylus moreletii) in Belize, CA, inferred from microsatellite markers. J Exp Zool A Ecol Genet Physiol 309(10):643–648. https://doi.org/10.1002/jez.500

  • Marie AD, Herbinger C, Fullsack P et al (2019) First reconstruction of kinship in a scalloped hammerhead shark aggregation reveals the mating patterns and breeding sex ratio. Front Mar Sci 6:676

    Article  Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB et al (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  CAS  PubMed  Google Scholar 

  • Milián-García Y, Jensen EL, Mena SR et al (2016) Genetic evidence for multiple paternity in the critically endangered Cuban crocodile (Crocodylus rhombifer). Amphibia-Reptilia 37(3). https://doi.org/10.1163/15685381-00003056

  • Muniz FL, Da Silveira R, Campos Z et al (2011) Multiple paternity in the Black Caiman (Melanosuchus niger) population in the Anavilhanas National Park, Brazilian Amazonia. Amphibia-Reptilia 32:428–434

    Google Scholar 

  • Muniz FL, Ximenes AM, Bittencourt PS et al (2019) Detecting population structure of Paleosuchus trigonatus (Alligatoridae: Caimaninae) through microsatellite markers developed by next generation sequencing. Mol Biol Rep 46(2):2473–2484

    Article  CAS  PubMed  Google Scholar 

  • Myers EM, Zamudio KR (2004) Multiple paternity in an aggregate breeding amphibian: the effect of reproductive skew on estimates of male reproductive success. Mol Ecol 13:1951–1963

    Google Scholar 

  • Ojeda GN, Amavet PS, Rueda EC et al (2017) Mating system of Caiman yacare (Reptilia: Alligatoridae) described from microsatellite genotypes. J Hered 108(2):135–141

    PubMed  Google Scholar 

  • Oliveira DP, Marioni B, Farias IP, et al (2010) Multiple paternity in Caiman crocodilus from the piagaçu–purus sustainable development reserve. In: Proceedings of the 20th Working Meeting of the Crocodile Specialist Group of the Species Survival Commission of IUCN. Gland, Switzerland, pp 225–228

    Google Scholar 

  • Oliveira DP, Marioni B, Farias IP et al (2014) Genetic evidence for polygamy as a mating strategy in Caiman crocodilus. J Hered 105(4):485–492

    Article  PubMed  Google Scholar 

  • Rotstein DS, Schoeb TR, Davis LM et al (2002) Detection by microsatellite analysis of early embryo mortality in an alligator population in Florida. J Wildl Dis 38(1):160–165

    Article  CAS  PubMed  Google Scholar 

  • Santos RC, Thorbjarnarson J, Botero-Arias R et al (2010) Multiple paternity in nests of Melanosuchus niger from the Mamirauá Sustainable Development Reserve, Amazonas, Brazil. In: Crocodiles: Proceedings of the 20th Working Meeting of the IUCN/SSC Crocodile Specialist Group. Gland, Switzerland, pp 229

    Google Scholar 

  • Sefc KM, Koblmuller S (2009) Assessing parent numbers from offspring genotypes: the importance of marker polymorphism. J Hered 100:197–205

    Article  CAS  PubMed  Google Scholar 

  • Somaweera R, Brien M, Shine R (2013) The role of predation in shaping crocodilian natural history. Herpetol Monogr 27:23–51

    Article  Google Scholar 

  • Thorbjarnarson JB (1996) Reproductive characteristics of the order Crocodylia. Herpetologica 52:8–24

    Google Scholar 

  • Thorbjarnarson JB (1999) Crocodile tears and skins: international trade, economic constraints and limits to the sustainable use of crocodilians. Conserv Biol 13(3):465–470

    Article  Google Scholar 

  • Verdade LM, Andrade RN (2003) Studbook Regional do Jacaré-de-Papo-Amarelo (Caiman latirostris): 1993/2003. ESALQ/USP, Piracicaba/São Paulo

    Google Scholar 

  • Verdade LM, Sarkis F (1998) Age at first reproduction in captive Caiman latirostris (Broad-snouted Caiman). Herpetol Rev 29:227–228

    Google Scholar 

  • Verdade LM, Sarkis-goncalves F, Miranda-vilela MP et al (2003) New record of age at sexual maturity in captivity for Caiman latirostris (Broad-snouted caiman). Herpetol Rev 34(3):225–226

    Google Scholar 

  • Verdade LM, Larriera A, Piña CI (2010) Broad-snouted Caiman Caiman latirostris. In: Manolis SC, Stevenson C (eds) Crocodiles. Status survey and conservation action plan. Crocodile Specialist Group, Darwin, pp 18–22

    Google Scholar 

  • Villamarín-Jurado F, Suárez E (2007) Nesting of the Black Caiman (Melanosuchus niger) in Northeastern Ecuador. J Herpetol 41(1):164–167

    Article  Google Scholar 

  • Wan QH, Pan SK, Hu L et al (2013) Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator. Cell Res 23:1091–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J (2016) Individual identification from genetic marker data: developments and accuracy comparisons of methods. Mol Ecol Resour 16:163–175

    Article  CAS  PubMed  Google Scholar 

  • Webb GJW, Manolis SC, Dempsey KE et al (1987) Crocodilian eggs: a functional overview. In: GJW W, Manolis SC, Whitehead PJ (eds) Wildlife management: crocodiles and alligators. Surrey Beatty, Chipping Norton, pp 417–422

    Google Scholar 

  • Wu XB, Hu Y (2010) Multiple paternity in Chinese alligator (Alligator sinensis) clutches during a reproductive season at Xuanzhou Nature Reserve. Amphibia-Reptilia 31(3):419–424

    Article  Google Scholar 

  • Zajdel J, Lance SL, Rainwater TR et al (2019) Mating dynamics and multiple paternity in a long-lived vertebrate. Ecol Evol 9(18):10109–10121

    Article  PubMed  PubMed Central  Google Scholar 

  • Zucoloto RB, Verdade LM, Villela PMS et al (2009) Parentage test in broad-snouted caimans (Caiman latirostris, Crocodylidae) using microsatellite DNA. Genet Mol Biol 32(4):874–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally R. Isberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Isberg, S.R. (2021). Crocodilians Are Promiscuous But Not to the Benefit of Heterozygosity. In: Zucoloto, R.B., Amavet, P.S., Verdade, L.M., Farias, I.P. (eds) Conservation Genetics of New World Crocodilians. Springer, Cham. https://doi.org/10.1007/978-3-030-56383-7_6

Download citation

Publish with us

Policies and ethics