Abstract
Crocodilian mating systems are complex but molecular genetics is providing some of the tools necessary to begin their unravelling. The most significant unravelling has been the widespread occurrence of multiple paternity (more than one sire for a clutch of eggs) across the global crocodilian species. The advantages of this strategy are still being debated and may differ across the different species, being dependent on factors such as population density and habitat availability at the individual population level. This chapter reviews the available literature outlining the impact other complexities such as nest site selection, the potential for communal nesting and “alloprotection” (non-biological female exhibiting nest guarding of conspecific eggs) could have on defining the mating strategies of crocodilians. However, it is argued that any advantage of genetic gain, genetic variability or inbreeding avoidance that might achieved by multiple paternity is overcome by low embryo and offspring survival leading to low recruitment rates into the adult breeding population. The limitations of experimental design are also discussed which may be leading to upwardly biased estimates of hypothetical sire numbers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allsteadt J (1994) Nesting ecology of Caiman crocodilus in Caño Negro, Costa Rica. J Herpetol 28(1):12–19
Amavet P, Rosso E, Markariani R et al (2008) Microsatellite DNA markers applied to detection of multiple paternity in Caiman latirostris in Santa Fe, Argentina. J Exp Zool A Ecol Genet Physiol 309(10):637–642
Amavet PS, Vilardi JC, Rueda EC et al (2012) Mating system and population analysis of the broad-snouted caiman (Caiman latirostris) using microsatellite markers. Amphibia-Reptilia 33(1):83–93
Bagwill A, Sever DM, Else RM (2009) Seasonal variation of the oviduct of the American alligator, Alligator mississippiensis. (Reptilia: Crocodylia). J Morphol 270:702–713
Brien ML, Webb GJ, McGuinness K et al (2014) The relationship between early growth and survival of hatchling saltwater crocodiles (Crocodylus porosus) in Captivity. PLoS ONE 9(6):e100276
Budd KM, Spotila JR, Mauger LA (2015) Preliminary mating analysis of American crocodiles, Crocodylus acutus, in Las Baulas, Santa Rosa, and Palo Verde National Parks, Guanacaste, Costa Rica. S Am J Herpetol 10(1):4–9
Campos Z (1993) Effect of habitat on survival of eggs and sex ratio of hatchlings of Caiman crocodilus yacare in the Pantanal, Brazil. J Herpetol 27(2):127–132
Cintra R (1988) Nesting ecology of the Paraguayan caiman (Caiman yacare) in the Brazilian Pantanal. J Herpetol 22(2):219–222
Ciocan H, Piña CI, Larriera A (2016) Population status of Caiman latirostris in the “Managed nature reserve El Fisco”. In: Crocodiles: Proceedings of the 24th working meeting of the IUCN/SSC crocodile specialist group. Gland, Switzerland, p 155
Croshaw DA, Peters MB, Glenn TC (2009) Comparing the performance of analytical techniques for genetic parentage of half-sib progeny arrays. Genet Res 91(5):313–325
Cunha FAG, Barboza RSL, Rebêlo GH (2016) Communal nesting of Caiman crocodilus (Linneaus, 1758) (Crocodylia: Alligatoridae) in lower Amazon river floodplain, Brazil. Herpetol Notes 9:141–144
Davenport M (1995) Evidence of possible sperm storage in the caiman, Paleosuchus palpebrosus. Herpetol Rev 26:14–15
Davis LM, Glenn TC, Elsey RM et al (2000) Genetic structure of six populations of American alligators: a microsatellite analysis. In: Grigg G, Seebacher F, Franklin C (eds) Crocodilian biology and evolution. Surrey Beatty, Chipping Norton, pp 38–50
Davis LM, Glenn TC, Elsey RM et al (2001) Multiple paternity and mating patterns in the American alligator, Alligator mississippiensis. Mol Ecol 10:1011–1024
DeWoody AJ, DeWoody YD, Fiumera AC et al (2000) On the number of reproductives contributing to a half-sib progeny array. Genetical Research 75:95–105
Egloff C, Labrosse A, Hebert C et al (2009) A nondestructive method for obtaining maternal DNA from avian eggshells and its application to embryonic viability determination in herring gulls (Larus argentatus). Mol Ecol Resour 9(1):19–27
Elsey RM, Trosclair PL, Glenn TC (2008) Nest site fidelity in American alligators in a Louisiana coastal marsh. Southeast Nat 7(4):737–743
Finger JW, Thomson PC, Adams AL et al (2015) Reference levels for corticosterone and immune function in farmed saltwater crocodiles (Crocodylus porosus) hatchlings using current Code of Practice guidelines. Gen Comp Endocrinol 212:63–72
Flanagan SP, Jones AG (2019) The future of parentage analysis: from microsatellites to SNPs and beyond. Mol Ecol 28(3):544–567
Gist D, Bagwill A, Lance V et al (2008) Sperm storage in the oviduct of the American alligator. J Exp Zool A Ecol Genet Physiol 309:581–587
Glenn TC, Dessauer HC, Braun MJ (1998) Characterization of microsatellite DNA loci in American alligators. Copeia 1998(3):591–601
Goodnight KF, Queller DC (1999) Computer Software for performing likelihood tests of pedigree relationship using genetic markers. Mol Ecol 8:1231–1234
Green RE, Braun EL, Armstrong J et al (2014) Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346:125449
Isberg SR, Chen Y, Barker SG et al (2004) Analysis of microsatellites and parentage testing in saltwater crocodiles. J Hered 95(5):445–449
Isberg SR, Thomson PC, Nicholas FW et al (2005a) Quantitative analysis of production traits in saltwater crocodiles (Crocodylus porosus): I. Reproduction traits. J Anim Breed Genet 122:361–369
Isberg SR, Thomson PC, Nicholas FW et al (2005b) Quantitative analysis of production traits in saltwater crocodiles (Crocodylus porosus): II. Age at slaughter. J Anim Breed Genet 122:370–377
Joanen T, McNease LL (1989) Ecology and physiology of nesting and early development of the American alligator. Am Zool 29:987–998
Jones AG (2005) GERUD 2.0: a computer program for the reconstruction of parental genotypes from half-sib progeny arrays with known or unknown parents. Mol Ecol Notes 5:708–711
Jones AG, Small CM, Paczolt KA et al (2010) A practical guide to methods of parentage analysis. Mol Ecol Resour 10:6–30
Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106
Karaket T, Poompuang S (2012) CERVUS vs. COLONY for successful parentage and sibship determinations in freshwater prawn Macrobrachium rosenbergii de Man. Aquaculture 324–325:307–311
Kushlan JA, Jacobsen T (1990) Environmental viability and the reproductive success of the Everglades alligator. J Herpetol 24(2):176–184
Lafferriere NAR, Antelo R, Alda F et al (2016) Multiple paternity in a reintroduced population of the Orinoco crocodile (Crocodylus intermedius) at the El Frío Biological Station, Venezuela. PLoS One 11(3):e0150245
Lance SL, Tuberville TD, Dueck L et al (2009) Multiyear multiple paternity and mate fidelity in the American alligator, Alligator mississippiensis. Mol Ecol 18(21):4508–4520
Larriera A (2002) Caiman latirostris (Broad-snouted Caiman). Communal nesting. Herpetol Rev 3:33
Lewis JL, FitzSimmons NN, Jamerlan ML et al (2013) Mating systems and multiple paternity in the estuarine crocodile (Crocodylus porosus). J Herpetol 47(1):24–33
Manolis SC, Webb GJW (compilers) (2016) Best management practices for crocodilian farming. Version 1. IUCN-SSC Crocodile Specialist Group, Darwin
McVay JD, Rodriguez D, Rainwater TR et al (2008) Evidence of multiple paternity in Morelet’s Crocodile (Crocodylus moreletii) in Belize, CA, inferred from microsatellite markers. J Exp Zool A Ecol Genet Physiol 309(10):643–648. https://doi.org/10.1002/jez.500
Marie AD, Herbinger C, Fullsack P et al (2019) First reconstruction of kinship in a scalloped hammerhead shark aggregation reveals the mating patterns and breeding sex ratio. Front Mar Sci 6:676
Marshall TC, Slate J, Kruuk LEB et al (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655
Milián-García Y, Jensen EL, Mena SR et al (2016) Genetic evidence for multiple paternity in the critically endangered Cuban crocodile (Crocodylus rhombifer). Amphibia-Reptilia 37(3). https://doi.org/10.1163/15685381-00003056
Muniz FL, Da Silveira R, Campos Z et al (2011) Multiple paternity in the Black Caiman (Melanosuchus niger) population in the Anavilhanas National Park, Brazilian Amazonia. Amphibia-Reptilia 32:428–434
Muniz FL, Ximenes AM, Bittencourt PS et al (2019) Detecting population structure of Paleosuchus trigonatus (Alligatoridae: Caimaninae) through microsatellite markers developed by next generation sequencing. Mol Biol Rep 46(2):2473–2484
Myers EM, Zamudio KR (2004) Multiple paternity in an aggregate breeding amphibian: the effect of reproductive skew on estimates of male reproductive success. Mol Ecol 13:1951–1963
Ojeda GN, Amavet PS, Rueda EC et al (2017) Mating system of Caiman yacare (Reptilia: Alligatoridae) described from microsatellite genotypes. J Hered 108(2):135–141
Oliveira DP, Marioni B, Farias IP, et al (2010) Multiple paternity in Caiman crocodilus from the piagaçu–purus sustainable development reserve. In: Proceedings of the 20th Working Meeting of the Crocodile Specialist Group of the Species Survival Commission of IUCN. Gland, Switzerland, pp 225–228
Oliveira DP, Marioni B, Farias IP et al (2014) Genetic evidence for polygamy as a mating strategy in Caiman crocodilus. J Hered 105(4):485–492
Rotstein DS, Schoeb TR, Davis LM et al (2002) Detection by microsatellite analysis of early embryo mortality in an alligator population in Florida. J Wildl Dis 38(1):160–165
Santos RC, Thorbjarnarson J, Botero-Arias R et al (2010) Multiple paternity in nests of Melanosuchus niger from the Mamirauá Sustainable Development Reserve, Amazonas, Brazil. In: Crocodiles: Proceedings of the 20th Working Meeting of the IUCN/SSC Crocodile Specialist Group. Gland, Switzerland, pp 229
Sefc KM, Koblmuller S (2009) Assessing parent numbers from offspring genotypes: the importance of marker polymorphism. J Hered 100:197–205
Somaweera R, Brien M, Shine R (2013) The role of predation in shaping crocodilian natural history. Herpetol Monogr 27:23–51
Thorbjarnarson JB (1996) Reproductive characteristics of the order Crocodylia. Herpetologica 52:8–24
Thorbjarnarson JB (1999) Crocodile tears and skins: international trade, economic constraints and limits to the sustainable use of crocodilians. Conserv Biol 13(3):465–470
Verdade LM, Andrade RN (2003) Studbook Regional do Jacaré-de-Papo-Amarelo (Caiman latirostris): 1993/2003. ESALQ/USP, Piracicaba/São Paulo
Verdade LM, Sarkis F (1998) Age at first reproduction in captive Caiman latirostris (Broad-snouted Caiman). Herpetol Rev 29:227–228
Verdade LM, Sarkis-goncalves F, Miranda-vilela MP et al (2003) New record of age at sexual maturity in captivity for Caiman latirostris (Broad-snouted caiman). Herpetol Rev 34(3):225–226
Verdade LM, Larriera A, Piña CI (2010) Broad-snouted Caiman Caiman latirostris. In: Manolis SC, Stevenson C (eds) Crocodiles. Status survey and conservation action plan. Crocodile Specialist Group, Darwin, pp 18–22
Villamarín-Jurado F, Suárez E (2007) Nesting of the Black Caiman (Melanosuchus niger) in Northeastern Ecuador. J Herpetol 41(1):164–167
Wan QH, Pan SK, Hu L et al (2013) Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator. Cell Res 23:1091–1105
Wang J (2016) Individual identification from genetic marker data: developments and accuracy comparisons of methods. Mol Ecol Resour 16:163–175
Webb GJW, Manolis SC, Dempsey KE et al (1987) Crocodilian eggs: a functional overview. In: GJW W, Manolis SC, Whitehead PJ (eds) Wildlife management: crocodiles and alligators. Surrey Beatty, Chipping Norton, pp 417–422
Wu XB, Hu Y (2010) Multiple paternity in Chinese alligator (Alligator sinensis) clutches during a reproductive season at Xuanzhou Nature Reserve. Amphibia-Reptilia 31(3):419–424
Zajdel J, Lance SL, Rainwater TR et al (2019) Mating dynamics and multiple paternity in a long-lived vertebrate. Ecol Evol 9(18):10109–10121
Zucoloto RB, Verdade LM, Villela PMS et al (2009) Parentage test in broad-snouted caimans (Caiman latirostris, Crocodylidae) using microsatellite DNA. Genet Mol Biol 32(4):874–881
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Isberg, S.R. (2021). Crocodilians Are Promiscuous But Not to the Benefit of Heterozygosity. In: Zucoloto, R.B., Amavet, P.S., Verdade, L.M., Farias, I.P. (eds) Conservation Genetics of New World Crocodilians. Springer, Cham. https://doi.org/10.1007/978-3-030-56383-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-56383-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-56382-0
Online ISBN: 978-3-030-56383-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)