Abstract
During the late twentieth and early twenty-first centuries, there has been a revolution in evolutionary biology. Traditional methods that had been applied to understanding relationships and natural history for hundreds of years have been supplemented (and sometimes replaced) by biochemical and molecular techniques that now allow us to examine the entire genomes of non-model organisms. Herein we review the use of these new technologies as they apply to crocodylians in general and specifically to the New-World members of the Alligatoridae and Crocodylidae. While generally concordant with traditional analyses, in some cases they have permitted cryptic species to be recognized. In addition, they have allowed crocodylian biologists to detect hybridization events between species, both in captivity and in the wild, that would not have been possible before their use. Hybridization may lead to the formation of new species, but it may also allow a common species to “swamp out” a rarer one. Because there appears to be little hybrid dysgenesis between many of the potential hybridizing forms, hybridization is potentially a serious problem for several New-World species.
Keywords
- Molecular systematics
- Morphological systematics
- Classification
- Dispersal
- Hybridization
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptions


References
Angulo-Bedoya M, Correa S, Benítez HA (2019) Unveiling the cryptic morphology and ontogeny of the Colombian Caiman crocodilus: a geometric morphometric approach. Zoomorphology 138:387–397. https://doi.org/10.1007/s00435-019-00448-2
Balaguera-Reina SA, Vargas-Ramirez M, Ordonez-Garza N, Hernandez-Gonzalez F et al (2020) Unveiling the mystery: assessing the evolutionary trajectory of the Apaporis caiman population (Caiman crocodilus apaporiensis, Medem 1955) via mitochondrial markers. Biol Jour Linn Soc 2020, XX, 1–9
Bittencourt PS, Campos Z, Muniz F d L et al (2019) Evidence of cryptic lineages within a small South American crocodilian: the Schneider’s dwarf caiman Paleosuchus trigonatus (Alligatoridae: Caimaninae). PeerJ 7:e6580. https://doi.org/10.7717/peerj.6580
Bloor P (2013) Genética del orden Crocodylia en Colombia. In: Morales-Betancourt MA, Lasso CA, de La Ossa-Velásquez J, Fajardo-Patiño A (eds) Biología y Conservación de los Crocodylia de Colombia. Instituto Alexander von Humboldt, Bogotá, D.C, pp 259–276
Bloor P, Ibáñez C, Viloria-Lagares TA (2015) Mitochondrial DNA analysis reveals hidden genetic diversity in captive populations of the threatened American crocodile (Crocodylus acutus) in Colombia. Ecol Evol 5:130–140. https://doi.org/10.1002/ece3.1307
Bona P, Ezcurra MD, Barrios F, Fernandez Blanco MV (2018) A new Palaeocene crocodylian from southern Argentina sheds light on the early history of caimanines. Proc R Soc B Biol Sci 285:20180843. https://doi.org/10.1098/rspb.2018.0843
Borges VS, Santiago PC, Lima NGS et al (2018) Evolutionary significant units within populations of Neotropical broad-snouted caimans (Caiman latirostris, Daudin, 1802). J Herpetol 52:282–288. https://doi.org/10.1670/17-074
Brochu CA (2003) Phylogenetic approaches toward crocodylian history. Annu Rev Earth Planet Sci 31:357–397. https://doi.org/10.1146/annurev.earth.31.100901.141308
Brochu CA, Densmore LD (2001) Crocodile phylogenetics: a summary of current progress. In: Grigg GC, Seebacher F, Franklin CE (eds) Crocodilian biology and evolution. Surrey Beatty and Sons, Sydney, pp 3–8
Busack SD, Pandya S (2001) Geographic variation in Caiman crocodilus and Caiman yacare (Crocodylia: Alligatoridae): systematics and legal implications. Herpetologica 57:294–312
Campos Z, Mourão G, Coutinho ME, Magnusson WE (2014) Growth of Caiman crocodilus yacare in the Brazilian Pantanal. PLoS One 9:1–5. https://doi.org/10.1371/journal.pone.0089363
Campos Z, Mourão G, Coutinho ME et al (2015) Spatial and temporal variation in reproduction of a generalist crocodilian, Caiman crocodilus yacare, in a seasonally flooded wetland. PLoS One 10:e0129368. https://doi.org/10.1371/journal.pone.0129368
Cedeño-Vázquez JR, Rodriguez D, Calmé S et al (2008) Hybridization between Crocodylus acutus and Crocodylus moreletii in the Yucatan Peninsula: I. evidence from mitochondrial DNA and morphology. J Exp Zool Part A Ecol Genet Physiol 309A:661–673. https://doi.org/10.1002/jez.473
de Thoisy B, Hrbek T, Farias IP et al (2006) Genetic structure and population dynamics of Black caiman (Melanosuchus niger). Biol Conserv 133:474–482. https://doi.org/10.1016/j.biocon.2006.07.009
Densmore LD III (1983) Biochemical and immunological systematics of the order Crocodylia. In: Evolutionary biology, vol 16. Plenum Press, New York, pp 397–465
Densmore LD III, White PS (1991) The systematics and evolution of the crocodilia as suggested by restriction endonuclease analysis of mitochondrial and nuclear ribosomal DNA. Copeia 1991:602–615. https://doi.org/10.2307/1446388
Dessauer HC, Glenn TC, Densmore LD III (2002) Studies on the molecular evolution of the crocodylia: footprints in the sands of time. J Exp Zool Part B Mol Dev Evol 294:302–311. https://doi.org/10.1002/jez.10208
Dever JA, Strauss RE, Rainwater TR et al (2002) Genetic diversity, population subdivision, and gene flow in Morelet’s crocodile (Crocodylus moreletii) from Belize, Central America. Copeia 2002:1078–1091. https://doi.org/10.1643/0045-8511(2002)002[1078:gdpsag]2.0.co;2
Eaton MJ, Martin AP, Thorbjarnarson JB, Amato G (2009) Species-level diversification of African dwarf crocodiles (Genus Osteolaemus): a geographic and phylogenetic perspective. Mol Phylogenet Evol 50:496–506. https://doi.org/10.1016/j.ympev.2008.11.009
Fitzsimmons NN, Buchan JC, Lam PV et al (2002) Identification of purebred Crocodylus siamensis for reintroduction in Vietnam. J Exp Zool Part B Mol Dev Evol 294:373–381. https://doi.org/10.1002/jez.10201
Franke FA, Schmidt F, Borgwardt C et al (2012) Genetic differentiation of the African dwarf crocodile Osteolaemus tetraspis Cope, 1861 (Crocodylia: Crocodylidae) and consequences for European zoos. Org Divers Evol 13:255–266. https://doi.org/10.1007/s13127-012-0107-1
Godshalk R (2006) Phylogeography and conservation genetics of the yacare caiman (Caiman yacare) of South America. University of Florida, Gainesville
González-Trujillo R, Rodriguez D, González-Romero A et al (2012) Testing for hybridization and assessing genetic diversity in Morelet’s crocodile (Crocodylus moreletii) populations from Central Veracruz. Conserv Genet 13:1677–1683. https://doi.org/10.1007/s10592-012-0406-2
Gorman GC, Wilson AC, Nakanishi M (1971) A biochemical approach towards the study of reptilian phylogeny: evolution of serum albumin and lactic dehydrogenase. Syst Zool 201:167–185. https://doi.org/10.2307/2412056
Graham-Smith GS (1904) Blood relationships amongst lower vertebrata and arthropods, etc., as indicated by 2500 tests with precipitating antisera. In: Blood immunity and blood relationship. Cambridge University Press, London, pp 336–380
Green RE, Braun EL, Armstrong J et al (2014) Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science (80- ) 346:1254449. https://doi.org/10.1126/science.1254449
Grigg GC, Kirshner D (2015) Biology and evolution of Crocodylians. CSIRO Publishing, Canberra
Hass CA, Hoffman MA, Densmore LD III, Maxson LR (1992) Crocodilian evolution: insights from immunological data. Mol Phylogenet Evol 1:193–201. https://doi.org/10.1016/1055-7903(92)90015-9
Hauswaldt JS, Vences M, Louis EE et al (2013) Philippine crocodile (Crocodylus mindorensis) as prerequisite for starting conservation a breeding program in Europe. Herpetol Conserv Biol 8:75–87
Hekkala ER, Platt SG, Thorbjarnarson JB et al (2015) Integrating molecular, phenotypic and environmental data to elucidate patterns of crocodile hybridization in Belize. R Soc Open Sci 2:15040. https://doi.org/10.1098/rsos.150409
Hrbek T, Vasconcelos WR, Rebêlo GH, Farias IP (2008) Phylogenetic relationships of South American alligatorids and the Caiman of Madeira River. J Exp Zool Part A Ecol Genet Physiol 309A:588–599. https://doi.org/10.1002/jez.430
Janke A, Arnason U (1997) The complete mitochondrial genome of Alligator mississippiensis and the separation between recent archosauria (birds and crocodiles). Mol Biol Evol 14:1266–1272. https://doi.org/10.1093/oxfordjournals.molbev.a025736
King FW, Burke RL (1981) Crocodilian, tuatara and turtle species of the world. A taxonomic and geographic reference. Association of Systematic Collections, Washington, DC
Li Y, Wu X, Ji X et al (2007) The complete mitochondrial genome of salt-water crocodile (Crocodylus porosus) and phylogeny of crocodilians. J Genet Genomics 34:119–128. https://doi.org/10.1016/S1673-8527(07)60013-7
Magnusson WE (2001) Science or politics: the case of Caiman yacare. Crocodile Spec Gr Newsl 20:72–75
Man Z, Yishu W, Peng Y, Xiaobing W (2011) Crocodilian phylogeny inferred from twelve mitochondrial protein-coding genes, with new complete mitochondrial genomic sequences for Crocodylus acutus and Crocodylus novaeguineae. Mol Phylogenet Evol 60:62–67. https://doi.org/10.1016/j.ympev.2011.03.029
Marioni B, Farias IP, Verdade LM et al (2013) Avaliação do risco de extinção do jacaré-açu Melanosuchus niger (Spix, 1825) no Brasil. Biodiversidade Bras 3:31–39
McAliley LR, Willis RE, Ray DA et al (2006) Are crocodiles really monophyletic? – evidence for subdivisions from sequence and morphological data. Mol Phylogenet Evol 39:16–32. https://doi.org/10.1016/j.ympev.2006.01.012
Medem F (1955) A new subspecies of Caiman sclerops from Colombia. Fieldiana (Zoology) 37:339–344
Meganathan PR, Dubey B, Batzer MA et al (2010) Molecular phylogenetic analyses of genus Crocodylus (Eusuchia, Crocodylia, Crocodylidae) and the taxonomic position of Crocodylus porosus. Mol Phylogenet Evol 57:393–402. https://doi.org/10.1016/j.ympev.2010.06.011
Meredith RW, Hekkala ER, Amato G, Gatesy J (2011) A phylogenetic hypothesis for Crocodylus (Crocodylia) based on mitochondrial DNA: evidence for a trans-Atlantic voyage from Africa to the New World. Mol Phylogenet Evol 60:183–191. https://doi.org/10.1016/j.ympev.2011.03.026
Milián-Garcia Y, Amato G, Gatesy J, Hekkala E et al (2020) Phylogenomics reveals novel relationships among Neotropical crocodiles (Crocodylus spp.) Mol Phylogenet Evol 152 (2020) 106924
Milián-García Y, Venegas-Anaya M, Frias-Soler R et al (2011) Evolutionary history of Cuban crocodiles Crocodylus rhombifer and Crocodylus acutus inferred from multilocus markers. J Exp Zool Part A Ecol Genet Physiol 315A:358–375. https://doi.org/10.1002/jez.683
Milián-García Y, Ramos-Targarona R, Pérez-Fleitas E et al (2015) Genetic evidence of hybridization between the critically endangered Cuban crocodile and the American crocodile: implications for population history and in situ/ex situ conservation. Heredity (Edinb) 114:272–280. https://doi.org/10.1038/hdy.2014.96
Milián-García Y, Castellanos-Labarcena J, Russello MA, Amato G (2018a) Mitogenomic investigation reveals a cryptic lineage of Crocodylus in Cuba. Bull Mar Sci 94:329–343. https://doi.org/10.5343/bms.2016.1134
Milián-García Y, Russello MA, Castellanos-Labarcena J et al (2018b) Genetic evidence supports a distinct lineage of American crocodile (Crocodylus acutus) in the Greater Antilles. PeerJ 6:e5836. https://doi.org/10.7717/peerj.5836
Muniz F d L, Campos Z, Hernández-Rangel SM et al (2018) Delimitation of evolutionary units in Cuvier’s dwarf caiman, Paleosuchus palpebrosus (Cuvier, 1807): insights from conservation of a broadly distributed species. Conserv Genet 19:599–610. https://doi.org/10.1007/s10592-017-1035-6
Nuttall GHF (1904) Blood immunity and blood relationship. Cambridge University Press, London
Oaks JR (2011) A time-calibrated species tree of crocodylia reveals a recent radiation of the true crocodiles. Evolution (NY) 65:3285–3297. https://doi.org/10.1111/j.1558-5646.2011.01373.x
Pacheco-Sierra G, Gompert Z, Domínguez-Laso J, Vázquez-Domínguez E (2016) Genetic and morphological evidence of a geographically widespread hybrid zone between two crocodile species, Crocodylus acutus and Crocodylus moreletii. Mol Ecol 25:3484–3498. https://doi.org/10.1111/mec.13694
Pacheco-Sierra G, Vázquez-Domínguez E, Pérez-Alquicira J et al (2018) Ancestral hybridization yields evolutionary distinct hybrids lineages and species boundaries in crocodiles, posing unique conservation conundrums. Front Ecol Evol 6:138. https://doi.org/10.3389/fevo.2018.00138
Poe S (1996) Data set incongruence and the phylogeny of crocodilians. Syst Biol 45:393–414. https://doi.org/10.1093/sysbio/45.4.393
Ramos-Targarona R, Rodríguez-Soberón R, Alonso-Tabet M, Thorbjarnarson JB (2010) Cuban crocodile (Crocodylus rhombifer). In: Manolis SC, Stevenson CM (eds) Crocodiles. Status Survey and Conservation Action Plan, 3rd edn. IUCN – SSC. Crocodile Specialist Group, Darwin, pp 114–118
Ray DA, Dever JA, Platt SG et al (2004) Low levels of nucleotide diversity in Crocodylus moreletii and evidence of hybridization with C. acutus. Conserv Genet 5:449–462. https://doi.org/10.1023/B:COGE.0000041024.96928.fe
Roberto IJ, Bittencourt PS, Muniz F d L et al (2020) Unexpected but unsurprising lineage diversity within the most widespread Neotropical crocodilian genus Caiman (Crocodylia, Alligatoridae). Syst Biodivers 18(4):377–395
Rodriguez D, Cedeño-Vázquez JR, Forstner MRJ, Densmore LD III (2008) Hybridization between Crocodylus acutus and Crocodylus moreletii in the Yucatan Peninsula: II. Evidence from microsatellites. J Exp Zool Part A Ecol Genet Physiol 309A:674–686. https://doi.org/10.1002/jez.499
Roos J, Aggarwall RK, Janke A (2007) Extended mitogenomic phylogenetic analyses yield new insight into crocodylian evolution and their survival of the Cretaceous – Tertiary boundary. Mol Phylogenet Evol 45:663–673. https://doi.org/10.1016/j.ympev.2007.06.018
Shirley MH, Vliet KA, Carr AN, Austin JD (2014) Rigorous approaches to species delimitation have significant implications for African crocodilian systematics and conservation. Proc R Soc London Ser B Biol Sci 281:20132483. https://doi.org/10.1098/rspb.2013.2483
Shirley MH, Carr AN, Nestler JH et al (2018) Systematic revision of the living African slender-snouted crocodiles (Mecistops Gray, 1844). Zootaxa 4504:151–193. https://doi.org/10.11646/zootaxa.4504.2.1
St John JA, Braun EL, Isberg SR et al (2012) Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes. Genome Biol 13:415. https://doi.org/10.1186/gb-2012-13-1-415
Steel R (1973) Crocodylia. In: Handbuch der Paleoherpetologie, vol 16. Fischer Verlag, Stuttgart, p 1
Taplin LE, Grigg GC (1981) Salt glands in the tongue of the estuarine crocodile Crocodylus porosus. Science (80- ) 212:1045–1047. https://doi.org/10.1126/science.212.4498.1045
Thorbjarnarson JB (2010) Black Caiman Melanosuchus niger. In: Manolis SC, Stevenson CM (eds) Crocodiles. Status survey and conservation action plan, 3rd edn. IUCN – SSC. Crocodile Specialist Group, Darwin, pp 29–39
Vasconcelos WR, Hrbek T, Da Silveira R et al (2008) A phylogeographic analysis of the black caiman (Melanosuchus niger). J Exp Zool Part A Ecol Genet Physiol 309A:600–613. https://doi.org/10.1002/jez.452
Velasco A, Ayarzagüena J (2010) Spectacled caiman Caiman crocodilus. In: Manolis SC, Stevenson CM (eds) Crocodiles. Status Survey and Conservation Action Plan, 3rd edn. IUCN – SSC. Crocodile Specialist Group, Darwin, pp 10–15
Venegas-Anaya M (2013) The use of integrative analyses for understanding the evolutionary and ecological determinants of diversity in New World Crocodylia. Texas Tech University
Venegas-Anaya M, Crawford AJ, Escobedo-Galván AH et al (2008) Mitochondrial DNA phylogeography of Caiman crocodilus in Mesoamerica and South America. J Exp Zool Part A Comp Exp Biol 309A:614–627. https://doi.org/10.1002/jez.502
Villela PMS (2009) Caracterização genética de crocodilianos brasileiros e desenvolvimento de marcadores microssatélites para Paleosuchus trigonatus. Universidade de São Paulo (USP), Escola Superior de Agricultura Luiz de Queiroz (ELSAQ), Centro de Energia Nuclear na Agricultura. https://doi.org/10.11606/T.91.2009.tde-17042009-140215
Weaver JP, Rodriguez D, Venegas-Anaya M et al (2008) Genetic characterization of captive Cuban crocodiles (Crocodylus rhombifer) and evidence of hybridization with the American crocodile (Crocodylus acutus). J Exp Zool Part A Comp Exp Biol 309A:649–660. https://doi.org/10.1002/jez.471
Willis RE (2009) Transthyretin gene (TTR) intron 1 elucidates crocodylian phylogenetic relationships. Mol Phylogenet Evol 53:1049–1054. https://doi.org/10.1016/j.ympev.2009.09.003
Willis RE, McAliley LR, Neeley ED, Densmore LD III (2007) Evidence for placing the false gharial (Tomistoma schlegelii) into the family Gavialidae: inferences from nuclear gene sequences. Mol Phylogenet Evol 43:787–794. https://doi.org/10.1016/j.ympev.2007.02.005
Wu X, Wang Y, Zhou K et al (2003) Complete mitochondrial DNA sequence of Chinese alligator, Alligator sinensis, and phylogeny of crocodiles. Chin Sci Bull 48:2050–2054. https://doi.org/10.1360/03wc0076
Acknowledgments
We want to thank all of the researchers who have worked on crocodylians across Central and South America and the Caribbean for the past century. Their efforts have facilitated new understanding about crocodylian evolution. In addition, we would like to dedicate this chapter to the memory of John “T” Thorbjarnarson, affectionately known as “Dr. Caiman.” He set many future crocodylian biologists on the path to studying these remarkable animals.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Densmore III, L.D., Hrbek, T. (2021). Molecular Phylogenetics of the New-World Crocodylia. In: Zucoloto, R.B., Amavet, P.S., Verdade, L.M., Farias, I.P. (eds) Conservation Genetics of New World Crocodilians. Springer, Cham. https://doi.org/10.1007/978-3-030-56383-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-56383-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-56382-0
Online ISBN: 978-3-030-56383-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)
