Skip to main content

Significance of Ammonothermal Synthesis for Nitride Materials

  • Chapter
  • First Online:
Ammonothermal Synthesis and Crystal Growth of Nitrides

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 304))

  • 560 Accesses

Abstract

This chapter is intended to introduce the ammonothermal synthesis as an alternative technique to other methods for nitride materials production. Properties of liquid and supercritical ammonia with focus on use as a solvent for nitride synthesis and crystal growth are discussed and compared to those of water. Finally, inherent drawbacks of the use of fluidic ammonia arising from its chemical properties are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Höhn, R. Niewa, Nitrides of non-main group elements, in Handbook of Solid State Chemistry, vol. 1, Materials and Structure of Solids, ed. by R. Dronskowski, S. Kikkawa, A. Stein (Wiley-VCH, Weinheim, Germany, 2017), p. 251.

    Google Scholar 

  2. W. Utsumi, H. Saitoh, H. Kaneko, T. Watanuki, K. Aoki, O. Shimomura, Congruent melting of gallium nitride at 6 GPa and its application to single crystal growth. Nat. Mater. 2, 735–738 (2003)

    Article  CAS  Google Scholar 

  3. H. Jacobs, D. Schmidt, High-pressure ammonolysis in solid-state chemistry. Curr. Top. Mater. Sci. 8, 387–427 (1982)

    Google Scholar 

  4. M. Zeuner, S. Pagano, W. Schnick, Nitridosilicates and oxonitridosilicates: from ceramic materials to structural and functional diversity. Angew. Chem. Int. Ed. 50, 7754–7775 (2011)

    Article  CAS  Google Scholar 

  5. H. Jacobs, E. von Pinkiowski, Synthese ternärer Nitride von Alkalimetallen: Verbindungen mit Tantal, MTaN2 mit M = Na, K, Rb und Cs. J. Less-Common Met. 146, 147–160 (1989)

    Article  CAS  Google Scholar 

  6. A. Miura, Low-temperature synthesis and rational design of nitrides and oxynitrides for functional material development. J. Ceram. Soc. Jpn. 125, 552–558 (2017)

    Article  CAS  Google Scholar 

  7. S. Broll, W. Jeitschko, The ternary rare-earth chromium nitrides Ce2CrN3 and Ln3Cr10–xN11 with Ln = La, Ce, Pr. Z. Naturforsch. B 50, 905–912 (1995)

    Article  CAS  Google Scholar 

  8. M. Pathak, D. Stoiber, M. Bobnar, A. Ovchinnikov, A. Ormeci, R. Niewa, P. Höhn, Synthesis, characterization and chemical bonding analysis of the lithium alkaline-earth metal gallide nitrides Li2(Ca3N)2[Ga4] and Li2(Sr3N)2[Ga4]. Z. Allg. Anorg. Chem. 643, 1557–1563 (2017)

    Article  CAS  Google Scholar 

  9. A. Simon, Group 1 and 2 suboxides and subnitrides—metals with atomic size holes and tunnels. Coord. Chem. Rev. 163, 253–270 (1997)

    Article  CAS  Google Scholar 

  10. R. Niewa, H. Jacobs, Group V and VI alkali nitridometalates: a growing class of compounds with structures related to silicate chemistry. Chem. Rev. 96, 2053–2062 (1996)

    Article  CAS  Google Scholar 

  11. T.M.M. Richter, R. Niewa, Chemistry of ammonothermal synthesis. Inorganics 2, 29–78 (2014)

    Article  CAS  Google Scholar 

  12. A. Rabenau, The role of hydrothermal synthesis in preparative chemistry. Angew. Chem. Int. Ed. 24, 1026–1040 (1985)

    Article  Google Scholar 

  13. G. Anger, J. Halstenberg, K. Hochgeschwender, C. Scherhag, U. Korallus, H. Knopf, P. Schmidt, M. Ohlinger, Chromium compounds, in Ullmann’s Encyclopedia of Industrial Chemistry, vol. 9 (Wiley-VCH, Weinheim, Germany, 2000), pp. 157–191

    Google Scholar 

  14. E.C. Franklin, C.A. Kraus, Some properties of liquid ammonia. Am. Chem. J. 21, 8–14 (1899)

    Google Scholar 

  15. A.V. Bandura, S.N. Lvov, The ionization constant of water over wide ranges of temperature and density. J. Phys. Chem. Ref. Data 35, 15–30 (2006)

    Article  CAS  Google Scholar 

  16. D. Zahn, A molecular simulation study of the auto-protolysis of ammonia as a function of temperature. Chem. Phys. Let. 682, 55–59 (2017)

    Article  CAS  Google Scholar 

  17. T.M. Seward, Metal complex formation in aqueous solutions at elevated temperatures and pressures. Phys. Chem. Earth 13–14, 113–132 (1982)

    Google Scholar 

  18. J.B. Chlistunov, K.P. Johnston, UV/vis spectroscopic determination of the dissociation constant of bichromate from 160 to 400 nm. J. Phys. Chem. B 102, 3993–4003 (1998)

    Article  Google Scholar 

  19. A. Holleman, N. Wiberg, E. Wiberg, Lehrbuch der Anorganischen Chemie, 102nd edn. (de Gruyter, Berlin, Germany, 2007)

    Book  Google Scholar 

  20. P. Böttcher, U. Kretschmann, Darstellung und Kristallstruktur von Dirubidiumpentatellurid, Rb2Te5. J. Less-Common Met. 95, 81–91 (1983)

    Article  Google Scholar 

  21. A.P. Purdy, Ammonothermal crystal growth of sulfide materials. Chem. Mater. 10, 692–694 (1998)

    Article  CAS  Google Scholar 

  22. H. Jacobs, J. Kockelkorn, T. Tacke, Hydroxide des Natriums, Kaliums und Rubidiums: Einkristallzüchtung und röntgenographische Strukturbestimmung an der bei Raumtemperatur stabilen Modifikation. Z. Anorg. Allg. Chem. 531, 119–124 (1985)

    Article  CAS  Google Scholar 

  23. A.P. Purdy, S. Case, C. George, Ammonothermal crystal growth of germanium and its alloys: synthesis of a hollow metallic crystal. Cryst. Growth Des. 3, 121–124 (2003)

    Article  CAS  Google Scholar 

  24. P. Böttcher, J. Getzschmann, R. Keller, Zur Kenntnis der Dialkalimetalldichalkogenide β-Na2S2, K2S2, α-Rb2S2, β-Rb2S2, K2Se2, Rb2Se2, α-K2Te2 und Rb2Te2. Z. Anorg. Allg. Chem. 619, 476–488 (1993)

    Article  Google Scholar 

  25. D.M. Young, G.L. Schimek, J.W. Kolis, Synthesis and characterization of [Yb(NH3)8][Cu(S4)2] ⋅ NH3, [Yb(NH3)8][Ag(S4)2] ⋅ 2 NH3, and [La(NH3)9][Cu(S4)2] in supercritical ammonia: metal sulfide salts of the first homoleptic lanthanide ammine complexes. Inorg. Chem. 33, 7620–7625 (1996)

    Article  Google Scholar 

  26. G.L. Schimek, G.W. Drake, J.W. Kolis, Crystal structure of calcium heptaammine hexasulfide, Ca(NH3)7S6. Acta Chem. Scand. 53, 145–148 (1999)

    Article  CAS  Google Scholar 

  27. M. Monz, H. Jacobs, Kaliumamidotrioxogermanate(IV)—Wasserstoff-Brückenbindungen in K3GeO3NH2 und K3GeO3NH2 ⋅ KNH2. Z. Anorg. Allg. Chem. 621, 137–142 (1995)

    Article  CAS  Google Scholar 

  28. T.J. Hennig, H. Jacobs, Strukturchemische Verwandtschaft von Kaliumhexahydroxoscandat(III), K3[Sc(OH)3] mit den isotypen Hydroxometallaten Rb3[Sc(OH)3], K3[Cr(OH)3] und Rb3[Cr(OH)3]. Z. Anorg. Allg. Chem. 616, 71–78 (1992)

    Article  CAS  Google Scholar 

  29. H. Jacobs, J. Bock, Kaliumhexahydroxochromat(III), K3[Cr(OH)6]: Beispiel eines neuen Syntheseweges für Metallhydroxide und Hydroxometallate. Z. Anorg. Allg. Chem. 546, 33–41 (1987)

    Article  CAS  Google Scholar 

  30. S. Pimputkar, T.F. Malkowski, S. Griffiths, A. Espenlaub, S. Suihkonen, J.S. Speck, S. Nakamura, Stability of materials in supercritical ammonia solutions. J. Supercrit. Fluids 110, 193–229 (2016)

    Article  CAS  Google Scholar 

  31. G. Kreiner, H. Jacobs, Magnetische Struktur von η-Mn3N2. J. Alloys Compd. 183, 345–362 (1992)

    Article  CAS  Google Scholar 

  32. H. Jacobs, C. Stüve, Hochdrucksynthese der η-Phase im System Mn-N: Mn3N2. J. Less-Common Met. 96, 323–329 (1984)

    Article  CAS  Google Scholar 

  33. H. Jacobs, D. Rechenbach, U. Zachwieja, Structure determination of γ′-Fe4N and ε-Fe3N. J. Alloys Compd. 227, 10–17 (1995)

    Article  CAS  Google Scholar 

  34. H. Jacobs, D. Rechenbach, U. Zachwieja, Untersuchungen zur Struktur und zum Zerfall von Eisennitriden—γ′-Fe4N und ε-Fe3N. Härterei Techn. Mitt. 50, 205–213 (1995)

    CAS  Google Scholar 

  35. H. Jacobs, J. Bock, Einkristallzüchtung von γ′-Fe4N in überkritischem Ammoniak. J. Less-Common Met. 134, 215–220 (1987)

    Article  CAS  Google Scholar 

  36. U. Zachwieja, H. Jacobs, Ammonothermalsynthese von Kupfernitrid, Cu3N. J. Less-Common Met. 161, 175–184 (1990)

    Article  CAS  Google Scholar 

  37. H. Jacobs, U. Fink, Untersuchung des Systems Kalium/Europium/Ammoniak. Z. Anorg. Allg. Chem. 438, 151–159 (1978)

    Article  CAS  Google Scholar 

  38. H. Jacobs, H. Scholze, Untersuchung des Systems Na/La/NH3. Z. Anorg. Allg. Chem. 427, 8–16 (1976)

    Article  CAS  Google Scholar 

  39. R. Juza, H. Jacobs, Ammonothermal synthesis of magnesium and beryllium amides. Angew. Chem. Int. Ed. 5, 247 (1966)

    Article  CAS  Google Scholar 

  40. A. Stuhr, H. Jacobs, R. Juza, Amide des Yttriums. Z. Anorg. Allg. Chem. 395, 291–300 (1973)

    Article  CAS  Google Scholar 

  41. B. Harbrecht, H. Jacobs, Hochdrucksynthese von Caesiumamidazid, Cs2(NH2)N3 aus Caesiummetall und Ammoniak. Z. Anorg. Allg. Chem. 500, 181–187 (1983)

    Article  CAS  Google Scholar 

  42. M. Zając, J. Gosk, E. Grzanka, S. Stelmakh, M. Palczewska, A. Wysmołek, K. Korona, M. Kamińska, A. Twardowski, Ammonothermal synthesis of GaN doped with transition metal ions (Mn, Fe, Cr). J. Alloys Compd. 456, 324–338 (2008)

    Article  CAS  Google Scholar 

  43. SixPoint Materials, www.spmaterials.com. Accessed 30 Oct 2017

  44. R. Dwiliński, R. Doradziński, J. Garczyński, L. Sierzputowski, M. Palczewska, A. Wysmolek, M. Kamińska, MRS Internet J. Nitride Semicond. Res. 3, e25 (1998)

    Article  Google Scholar 

  45. H. Jacobs, H. Mengis, Preparation and crystal structure of a sodium silicon nitride, NaSi2N3. Eur. J. Solid State Inorg. Chem. 30, 45–53 (1993)

    CAS  Google Scholar 

  46. Th Brokamp, H. Jacobs, Synthese und Kristallstruktur eines gemischtvalenten Lithium-Tantalnitrids Li2Ta3N5. J. Alloys Compd. 176, 47–60 (1991)

    Article  CAS  Google Scholar 

  47. H. Jacobs, R. Nymwegen, Darstellung und Kristallstruktur eines Kaliumnitridophosphats, K3P6N11. Z. Anorg. Allg. Chem. 623, 429–433 (1997)

    Article  CAS  Google Scholar 

  48. E. von Pinkowski, Darstellung und Charakterisierung von Alkalimetalltantalnitriden und Untersuchungen am System Natriumamid/Natriumazid. Doctoral Thesis (Universität Dortmund, 1988)

    Google Scholar 

  49. J. Häusler, W. Schnick, Ammonothermal synthesis of nitrides: recent developments and future perspectives. Chem. Eur. J. 24, 11864–11879 (2018)

    Article  CAS  Google Scholar 

  50. M. Mallmann, J. Häusler, N. Cordes, W. Schnick, Ammonothermal synthesis of alkali-alkaline earth metal and alkali-rare earth metal carbodiimides: K5–xMx(CN2)2+x(HCN2)1–x (M = Sr, Eu) and Na4.32Sr0.68(CN2)2.68(HCN2)0.32. Z. Anorg. Allg. Chem. 643, 1956–1961 (2017)

    Google Scholar 

  51. S. Zhang, D.A. Zherebtsov, F.J. DiSalvo, R. Niewa, Na5[CN2]2[CN], (Li, Na)5[CN2]2[CN], and K2[CN2]: carbodiimides from high-pressure synthesis. Z. Anorg. Allg. Chem. 638, 2111–2116 (2012)

    Article  CAS  Google Scholar 

  52. J. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Low-temperature crystallization of Eu-doped red-emitting CaAlSiN3 from alloy-derived ammonometallates. Chem. Mater. 19, 3592–3594 (2007)

    Article  CAS  Google Scholar 

  53. Y. Maruyama, T. Watanabe, Low-temperature synthesis of CaAlSiN3:Ce3+ using the ammonothermal method. J. Ceram. Soc. Jpn. 124, 66–69 (2016)

    Article  CAS  Google Scholar 

  54. T. Watanabe, K. Nonaka, J. Li, K. Kishida, M. Yoshimura, Low temperature ammonothermal synthesis of europium-doped SrAlSiN3 for a nitride red phosphor. J. Ceram. Soc. Jpn. 120, 500–502 (2012)

    Article  CAS  Google Scholar 

  55. K. Nonaka, K. Kishida, C. Izawa, T. Watanabe, Low temperature ammonothermal synthesis of europium-doped SrAlSiN3: effect of mineralizers. J. Ceram. Soc. Jpn. 122, 17–20 (2014)

    Article  CAS  Google Scholar 

  56. Y. Maruyama, Y. Yanase, T. Watanabe, Ammonothermal synthesis of charge-compensated SrAlSiN3:Ce3+ phosphor. J. Ceram. Soc. Jpn. 125, 399–401 (2017)

    Article  CAS  Google Scholar 

  57. J. Häusler, L. Neudert, M. Mallmann, R. Niklaus, A.-C.L. Kimmel, N.S.A. Alt, E. Schluecker, O. Oeckler, W. Schnick, Ammonothermal synthesis of novel nitrides: case study on CaGaSiN3. Chem. Eur. J. 23, 2583–2590 (2017)

    Article  CAS  Google Scholar 

  58. T. Toshima, K. Kishida, Y. Maruyama, T. Watanabe, Low-temperature synthesis of BaTaO2N by an ammonothermal method. J. Ceram. Soc. Jpn. 125, 643–647 (2017)

    Article  CAS  Google Scholar 

  59. C. Izawa, T. Kobayashi, K. Kishida, T. Watanabe, Ammonothermal synthesis and photocatalytic activity of lower valence cation-doped LaNbON2. Adv. Mater. Sci. Eng. 465720 (2014)

    Google Scholar 

  60. T. Watanabe, K. Tajima, J. Li, N. Matsushita, M. Yoshimura, Low-temperature ammonothermal synthesis of LaTaON2. Chem. Lett. 40, 1101–1102 (2011)

    Google Scholar 

  61. N. Cordes, W. Schnick, Ammonothermal synthesis of crystalline oxonitride perovskites LnTaON2 (Ln = La, Ce, Pr, Nd, Sm, Gd). Chem. Eur. J. 23, 11410–11415 (2017)

    Article  CAS  Google Scholar 

  62. J. Häusler, S. Schimmel, P. Wellmann, W. Schnick, Ammonothermal synthesis of earth-abundant nitride semiconductors ZnSiN2 and ZnGeN2 and dissolution monitoring by in situ X-ray imaging. Chem. Eur. J. 23, 12275–12282 (2017)

    Article  CAS  Google Scholar 

  63. J. Häusler, R. Niklaus, J. Minár, W. Schnick, Ammonothermal synthesis and optical properties of ternary nitride semiconductors Mg-IV-N2, Mn-IV-N2 and Li-IV2-N3 (IV = Si, Ge). Chem. Eur. J. 24, 1686–1693 (2018)

    Article  CAS  Google Scholar 

  64. J. Häusler, L. Eisenburger, O. Oeckler, W. Schnick, Ammonothermal synthesis and crystal structure of the nitridogermanate Ca1–xLixAl1–xGe1+xN3 (x ≈ 0.2). Eur. J. Inorg. Chem. 759–764 (2018)

    Google Scholar 

  65. H.W. Xiang, Vapor pressures, critical parameters, boiling points, and triple points of ammonia and trideuteroammonia. J. Phys. Chem. Ref. Data 33, 1005–1011 (2004)

    Article  CAS  Google Scholar 

  66. S. Rondinini, P. Longhi, P.R. Mussini, T. Mussini, Autoprotolysis constants in nonaqueous solvents and aqueous organic solvent mixtures. Pure Appl. Chem. 59, 1693–1702 (1987)

    Article  CAS  Google Scholar 

  67. B. Hertweck, T.G. Steigerwald, N.S.A. Alt, E. Schluecker, Corrosive degeneration of autoclaves for the ammonothermal synthesis: experimental approach and first results. Chem. Eng. Technol. 37, 1903–1906 (2014)

    Article  CAS  Google Scholar 

  68. B. Hertweck, T.G. Steigerwald, N.S.A. Alt, E. Schuecker, Different corrosion behavior of autoclaves made of nickel base alloy 718 in ammonobasic and ammonoacidic environment. J. Supercrit. Fluids 95, 158–166 (2014)

    Article  CAS  Google Scholar 

  69. S. Griffiths, S. Pimputkar, J.S. Speck, S. Nakamura, On the solubility of gallium nitride in supercritical ammonia-sodium solutions. J. Cryst. Growth 456, 5–14 (2016)

    Article  CAS  Google Scholar 

  70. T.G. Steigerwald, J. Balouschek, B. Hertweck, A.-C.L. Kimmel, N.S.A. Alt, E. Schluecker, In situ investigation of decomposing ammonia and ammonobasic solutions under supercritical conditions via UV/vis and Raman Spectroscopy. J. Supercrit. Fluids 134, 96–105 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Niewa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niewa, R. (2021). Significance of Ammonothermal Synthesis for Nitride Materials. In: Meissner, E., Niewa, R. (eds) Ammonothermal Synthesis and Crystal Growth of Nitrides. Springer Series in Materials Science, vol 304. Springer, Cham. https://doi.org/10.1007/978-3-030-56305-9_1

Download citation

Publish with us

Policies and ethics