Skip to main content

The Role of Genetics in Preventive Cardiology: Utility of Clinically Available Genetic Tests

  • Chapter
  • First Online:
ASPC Manual of Preventive Cardiology

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 730 Accesses

Abstract

Genetic testing can help fill an unmet clinical need in the specialty of preventive cardiology. While significant advances have been made over the past two decades in identification and treatment of individuals at increased risk for coronary artery disease events, a huge reservoir of residual cardiovascular risk remains. Genetic tests can help avoid the one diet, or one drug, fits all conundrum prevalent in modern cardiovascular disease prevention. Relevant genetic tests are commercially available and may be utilized to provide improved individualized cardiovascular disease (CVD) management. Genetic tests can improve CVD risk prediction, identify which primary prevention patients receive the greatest CVD event reduction benefit from daily aspirin treatment, create the foundation of a family heart disease clinic with cascade testing, assist in atrial fibrillation and dysrhythmia detection and management, assist in the diagnosis of cardiomyopathy, identify the genetic cause of severe hypercholesterolemia, and can help in the etiologic diagnosis of polygenic dyslipidemias. This allows more efficient clinical care by identification of patient groups who receive the greatest, or least, benefit from preventive intervention. This chapter will briefly address genetic history, what unmet clinical need genetic testing addresses, genetic tests that improve CVD risk prediction, the concept of a family heart disease clinic, tests that are associated with atrial fibrillation, tests available for cardiomyopathy and dysrhythmias, and tests useful in dyslipidemias. Such tools were not clinically available a decade ago, but now with increased commercial availability, and markedly reduced costs, they are accessible, affordable, and clinically applicable. Genetic testing can provide the preventive cardiologist with a powerful and sophisticated tool that can greatly enhance their ability to identify high coronary artery disease risk patients and family members, while enhancing clinical personalized management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wani A. History of animal breeding. Home grown farming. September 27th, 2012. Retrieved from: http://www.homegrownfarming.com/history-of-animal-breeding.

  2. Osler W. The principles and practice of medicine. New York: D. Appleton & Co; 1892. p. 664.

    Google Scholar 

  3. McKusick VA. The anatomy of the human genome: a neo-Vesalian basis for medicine in the 21st century. JAMA. 2001;286:2289–95.

    Article  CAS  PubMed  Google Scholar 

  4. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291:1304–51.

    Article  CAS  PubMed  Google Scholar 

  5. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;412:565.

    Article  CAS  Google Scholar 

  6. Venter JC, Smith HO, Hood L. A new strategy for genome sequencing. Nature. 1996;381:364–6.

    Article  CAS  PubMed  Google Scholar 

  7. Tse-Wen Chang TW. Binding of cells to matrixes of distinct antibodies coated on solid surface. J Immunol Methods. 1983;65:217–23.

    Article  Google Scholar 

  8. Emmert-Streib F, Dehmer M. Analysis of microarray data a network-based approach. Weinheim: Wiley-VCH; 2008. ISBN 978-3-527-31822-3.

    Book  Google Scholar 

  9. Dante Labs offers $199 whole genome sequencing promotion for black friday week. Digital Journal. http://www.digitaljournal.com/pr/4033057.

  10. Now you can sequence your whole genome for just $200. Wired. Retrieved from: https://www.wired.com/story/whole-genome-sequencing-cost-200-dollars/.

  11. Superko HR. Did grandma give you heart disease ? The new battle against coronary artery disease. Am J Cardiol. 1998;82:34–46.

    Article  Google Scholar 

  12. Goldstein JL, Schrott HG, Hazzard WR, Bierman EL, Motulsky AG. Hyperlipidemia in coronary heart disease II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest. 1973;52:1544–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cirino AL, Ho CY. Genetic testing in cardiac disease: from bench to bedside. Nat Clin Pract Cardiovasc Med. 2006;3:462–3.

    Article  PubMed  Google Scholar 

  14. Berkelhamer JE. Press statement on passage of the Genetic Information Nondiscrimination Act. Clin Pediatr (Phila). 2007;46:479.

    Article  Google Scholar 

  15. NCEP ATP-III. Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 2001;285:2486–97.

    Article  Google Scholar 

  16. Kotseva K, Stagmo M, De Bacquer D, De Backer G, Wood D, EUROASPIRE II Study Group. Treatment potential for cholesterol management in patients with coronary heart disease in 15 European countries: findings from the EUROASPIRE II survey. Atherosclerosis. 2008;197:710–7.

    Article  CAS  PubMed  Google Scholar 

  17. Superko HR, Roberts R, Garrett B, Pendyala L, King S. Family heart disease clinic model: a call to action. Clin Cardiol. 2009;33:E1–6.

    Article  Google Scholar 

  18. Berg K. Impact of medical genetics on research and practices in the area of cardiovascular disease. Clin Genet. 1989;36:299–312.

    CAS  PubMed  Google Scholar 

  19. Friedlander Y. Familial clustering of coronary heart disease: a review of its significance and role as a risk factor for the disease. In: Goldbourt U, de Faire U, Berg K, editors. Genetic factors in coronary heart disease. Hingham: Kluwer Academic Publishers; 1994. p. 37–53.

    Chapter  Google Scholar 

  20. Hamsten A, de Faire U. Risk factors for coronary artery disease in families of young men with myocardial infarction. Am J Cardiol. 1987;59:14–9.

    Article  CAS  PubMed  Google Scholar 

  21. Rissanen AM. Familial occurrence of coronary heart disease: effect of age at diagnosis. Am J Cardiol. 1979;44:60–6.

    Article  CAS  PubMed  Google Scholar 

  22. Friedlander Y, Lev-Merom D, Kark JD. Family history as predictor of incidence of acute myocardial infarction: The Jerusalem Lipid Research Clinic. Presented at the 2nd international conference on preventive cardiology and the 29th annual meeting of the AHA council on epidemiology, Washington, DC, USA June 18–22, 1989.

    Google Scholar 

  23. ten Kate LP, Boman H, Daiger SP, Motulsky AG. Familial aggregation of coronary heart disease and its relation to known genetic risk factors. Am J Cardiol. 1982;50:945–53.

    Article  PubMed  Google Scholar 

  24. AHA heart disease and stroke statistics. 2005 Update. www.americanheart.org.

  25. Sholtz RI, Rosenman RH, Brand RJ. The relationship of reported parental history to the incidence of coronary heart disease in the Western Collaborative Group Study. Am J Epidemiol. 1975;102:350–6.

    Article  CAS  PubMed  Google Scholar 

  26. Colditz GA, Rimm EB, Giovannucci E, Stampfer MJ, Rosner B, Willett WC. A prospective study of parental history of myocardial infarction and coronary artery disease in men. Am J Cardiol. 1991;67:933–8.

    Article  CAS  PubMed  Google Scholar 

  27. Barrett-Connor E, Khaw K. Family history of heart attack as an independent predictor of death due to cardiovascular disease. Circulation. 1984;69:1065–9.

    Article  CAS  PubMed  Google Scholar 

  28. Colditz GA, Stampfer MJ, Willett WC, Rosner B, Speizer FE, Hennekens CH. A prospective study of parental history of myocardial infarction and coronary heart disease in women. Am J Epidemiol. 1986;123:48–58.

    Article  CAS  PubMed  Google Scholar 

  29. Schildkraut JM, Myers RH, Cupples LA, Kiely DK, Kannel WB. Coronary risk associated with age and sex of parental heart disease in the Framingham study. Am J Cardiol. 1989;64:555–9.

    Article  CAS  PubMed  Google Scholar 

  30. Phillips AN, Shaper AG, Pocock SJ, Walker M. Parental death from heart disease and the risk of heart attack. Eur Heart J. 1988;9:243–51.

    Article  CAS  PubMed  Google Scholar 

  31. Hopkins PN, Williams RR, Kuida H, Stults BM, Hunt SC, Barlow GK, Owen AK. Family history as an independent risk factor for incident coronary artery disease in a high risk cohort in Utah. Am J Cardiol. 1988;62:703–7.

    Article  CAS  PubMed  Google Scholar 

  32. Marenberg ME, Risch N, Berkman LF, Floderus B, de Faire U. Genetic susceptibility to death from coronary heart disease in a study of twins. NEJM. 1994;330:1041–6.

    Article  CAS  PubMed  Google Scholar 

  33. Taylor AJ, Bindeman J, Bhattarai S, et al. Subclinical calcified atherosclerosis in men and its association with a family history of premature coronary heart disease in first- and second-degree relatives. Prev Cardiol. 2004;7:163–7.

    Article  PubMed  Google Scholar 

  34. Nasir K, Michos ED, John A, et al. Coronary artery calcification and family history of premature coronary heart disease. Sibling history is more strongly associated than parental history. Circulation. 2004;110:2150–6.

    Article  PubMed  Google Scholar 

  35. Superko HR, Roberts R, Agatston A, Frohwein S, Reingold JS, White TJ, Sninsky JJ, Margolis B, Momary KM, Garrett BC, King SB III. Genetic testing for early detection and monitoring response to therapy: challenges, promises, and treating beyond the numbers. Curr Atheroscler Rep. 2011;13:396–404.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sachdeva A, Cannon CP, Deedwania PC, Labresh KA, Smith SC Jr, Dai D, Hernandez A, Fonarow GC. Lipid levels in patients hospitalized with coronary artery disease: an analysis of 136,905 hospitalizations in Get With The Guidelines. Am Heart J. 2009;157:111–7.

    Article  CAS  PubMed  Google Scholar 

  37. Superko HR, King S III. Lipid management to reduce cardiovascular risk: a new strategy is required. Circulation. 2008;117:560–8.

    Article  PubMed  Google Scholar 

  38. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ, JUPITER Study Group. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195–207.

    Article  CAS  PubMed  Google Scholar 

  39. Sabatine MS, Leiter LA, Wiviott SD, Giugliano RP, Deedwania P, De Ferrari GM, Murphy SA, Kuder JF, Gouni-Berthold I, Lewis BS, Handelsman Y, Pineda AL, Honarpour N, Keech AC, Sever PS, Pedersen TR. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5:941–50.

    Article  CAS  PubMed  Google Scholar 

  40. Feinleib M, Kannel WB, Garrison RJ, McNamara PM, Castelli WP. The Framingham offspring study. Design and preliminary data. Prev Med. 1975;4:518–25.

    Article  CAS  PubMed  Google Scholar 

  41. ARIC investigators: the atherosclerosis risk in communities (ARIC) study. Am J Epidemiol. 1989;129:687–702.

    Google Scholar 

  42. Akosah KO, Schaper A, Cogbill C. Preventing myocardial infarction in the young adult in the first place: how do the National Cholesterol Education Panel III guidelines perform? J Am Coll Cardiol. 2003;41:1475–9.

    Article  PubMed  Google Scholar 

  43. Berman DS, Wong ND, Gransar H, et al. Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol. 2004;44:923–30.

    Article  CAS  PubMed  Google Scholar 

  44. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation. 2005;112:2735–52.

    Article  PubMed  Google Scholar 

  45. McPherson R, Pertsemlidis A, Kavaslar N, et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316:1488–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jarinova O, Stewart AF, Roberts R, et al. Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler Thromb Vasc Biol. 2009;29:1671–7.

    Article  CAS  PubMed  Google Scholar 

  47. Helgadottir A, Thorleifsson G, Manolescu A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316:1491–3.

    Article  CAS  PubMed  Google Scholar 

  48. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–78.

    Article  CAS  Google Scholar 

  49. Samani NJ, Erdmann J, Hall AS. Genomewide association analysis of coronary artery disease. NEJM. 2007;357:443–53.

    Article  CAS  PubMed  Google Scholar 

  50. Broadbent HM, Peden JF, Lorkowski S, et al. Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet. 2008;17:806–14.

    Article  CAS  PubMed  Google Scholar 

  51. Hinohara K, Nakajima T, Takahashi M, et al. Replication of the association between a chromosome 9p21 polymorphism and coronary artery disease in Japanese and Korean populations. J Hum Genet. 2008;53:357–9.

    Article  PubMed  CAS  Google Scholar 

  52. Assimes T, Knowles JW, Basu A, et al. Susceptibility locus for clinical and subclinical coronary artery disease at chromosome 9p21 in the multi-ethnic ADVANCE study. Hum Mol Genet. 2008;17:2320–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Helgadottir A, Thorleifsson G, Magnusson KP, et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet. 2008;40:217–24.

    Article  CAS  PubMed  Google Scholar 

  54. Matarín M, Brown WM, Scholz S, et al. A genome-wide genotyping study in patients with ischaemic stroke: initial analysis and data release. Lancet Neurol. 2007;6:414–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Brautbar A, Ballantyne CM, Lawson K, et al. Impact of adding a single allele in the 9p21 locus to traditional risk factors on reclassification of coronary heart disease risk and implications for lipid-modifying therapy in the Atherosclerosis Risk in Communities study. Circ Cardiovasc Genet. 2009;2:279–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dandona S, Stewart AF, Chen L, Williams K, et al. Gene dosage of the common variant 9p21 predicts severity of coronary artery disease. J Am Coll Cardiol. 2010;56:479–86.

    Article  CAS  PubMed  Google Scholar 

  57. Shiffman D, Rowland CM, Sninsky JJ, Devlin JJ. Polymorphisms associated with coronary heart disease: better by the score. Curr Opin Mol Ther. 2006;8:493–9.

    CAS  PubMed  Google Scholar 

  58. Davies RW, Dandona S, Stewart AF, et al. Improved prediction of cardiovascular disease based on a panel of single nucleotide polymorphisms identified through genome-wide association studies. Circ Cardiovasc Genet. 2010;3(5):468–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mega JL, Stitziel NO, Smith JG, Chasman DI, Caulfield MJ, Devlin JJ, Nordio F, Hyde CL, Cannon CP, Sacks FM, Poulter NR. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet. 2015;385:2264–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Khera AV, Emdin CA, Drake I, Natarajan P, Bick AG, Cook NR, Chasman DI, Baber U, Mehran R, Rader DJ, Fuster V, Boerwinkle E, Melander O, Orho-Melander M, Ridker PM, Kathiresan S. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016;375(24):2349–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. US Preventive Services Task Force. Aspirin for the prevention of cardiovascular disease: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2009;150:396–404.

    Article  Google Scholar 

  62. Chang KF, Shah SJ, Stafford R. A practical approach to low-dose aspirin for primary prevention. JAMA. 2019;322:301–2.

    Article  Google Scholar 

  63. Chasman DI, Shiffman D, Zee RY, Louie JZ, et al. Polymorphism in the apolipoprotein(a) gene, plasma lipoprotein(a), cardiovascular disease, and low-dose aspirin therapy. Atherosclerosis. 2009;203:371–6.

    Article  CAS  PubMed  Google Scholar 

  64. Shiffman D, Chasman DI, Ballantyne CM, et al. Coronary heart disease risk, aspirin use, and apolipoprotein(a) 4399Met allele in the Atherosclerosis Risk in Communities (ARIC) study. Thromb Haemost. 2009;102:179–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wei WQ, Li X, Feng Q, Kubo M, et al. LPA variants are associated with residual cardiovascular risk in patients receiving statins. Circulation. 2018;138:1839–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Scanu AM, Gless GM. Lipoprotein (a): heterogeneity and biological relevance. J Clin Invest. 1990;85:1709–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tsimikas S, Hall JL. Lipoprotein(a) as a potential causal genetic risk factor of cardiovascular disease: a rationale for increased efforts to understand its pathophysiology and develop targeted therapies. J Am Coll Cardiol. 2012;60:716–21.

    Article  CAS  PubMed  Google Scholar 

  68. Berg K. A new serum type system in man—the LP system. Acta Pathol Microbiol Scand. 1963;59:369–82.

    Article  CAS  PubMed  Google Scholar 

  69. Koschinsky ML, Beisiegel U, Henne-Bruns D, Eaton DL, Lawn RM. Apolipoprotein(a) size heterogeneity is related to variable number of repeat sequences in its mRNA. Biochemistry. 1990;29:640–4.

    Article  CAS  PubMed  Google Scholar 

  70. Clarke R, Peden JF, Hopewell JC, Kyriakou T, Goel A, Heath SC, Parish S, Barlera S, Franzosi MG, Rust S, Bennett D, Silveira A, Malarstig A, Green FR, Lathrop M, Gigante B, Leander K, de Faire U, Seedorf U, Hamsten A, Collins R, Watkins H, Farrall M, PROCARDIS Consortium. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009;361:2518–28.

    Article  CAS  PubMed  Google Scholar 

  71. Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, Nordestgaard BG. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA. 2009;301:2331–9.

    Article  CAS  PubMed  Google Scholar 

  72. Khera AV, Everett BM, Mora S. Lipoprotein (a) concentrations, rosuvastatin therapy, and residual vascular risk: an analysis from the JUPITER trial. Circulation. 2014;129:635–42.

    Article  CAS  PubMed  Google Scholar 

  73. Nordestgaard BG, Chapman MJ, Ray K, et al. Lipoprotein (a) as a cardiovascular risk factor: current status. Eur Heart J. 2010;31:2844–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ellis KL, Perez de Isla L, Alonso R, et al. Value of measuring lipoprotein (a) during cascade testing for familial hypercholesterolemia. JACC. 2019;73:1029–39.

    Article  CAS  PubMed  Google Scholar 

  75. Yeang C, Wilkinson MJ, Tsimikas S. Lipoprotein(a) and oxidized phospholipids in calcific aortic valve stenosis. Curr Opin Cardiol. 2016;31:440–50.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Thanassoulis G, Campbell CY, Owens DS, CHARGE Extracoronary Calcium Working Group, et al. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med. 2013;368:503–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kamstrup PR, Tybjærg-Hansen A, Nordestgaard BG. Elevated lipoprotein(a) and risk of aortic valve stenosis in the general population. J Am Coll Cardiol. 2014;63:470–7.

    Article  CAS  PubMed  Google Scholar 

  78. Arsenault BJ, Boekholdt SM, Dubé MP, et al. Lipoprotein(a) levels, genotype, and incident aortic valve stenosis: a prospective Mendelian randomization study and replication in a case–control cohort. Circ Cardiovasc Genet. 2014;7:304–10.

    Article  CAS  PubMed  Google Scholar 

  79. Vongpromek R, Bos S, Ten Kate GJ, et al. Lipoprotein(a) levels are associated with aortic valve calcification in asymptomatic patients with familial hypercholesterolaemia. J Intern Med. 2015;278:166–73.

    Article  CAS  PubMed  Google Scholar 

  80. Tsimikas S, Karwatowska-Prokopczuk E, Gouni-Berthold I, et al. Lipoprotein(a) reduction in persons with cardiovascular disease. N Engl J Med. 2020;382:244–55.

    Article  CAS  PubMed  Google Scholar 

  81. Chinchilla A, Daimi H, Lozano-Velasco E, Dominguez JN, Caballero R, Delpon E, Tamargo J, Cinca J, Hove-Madsen L, Aranega AE, Franco D. PITX2 insufficiency leads to atrial electrical and structural remodeling linked to arrhythmogenesis. Circ Cardiovasc Genet. 2011;4:269–79.

    Article  CAS  PubMed  Google Scholar 

  82. Gudbjartsson DF, Arnar DO, Helgadottir A, Gretarsdottir S, et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature. 2007;448:353–7.

    Article  CAS  PubMed  Google Scholar 

  83. Kaab S, Darbar D, van Noord C, Dupuis J, et al. Large scale replication and meta-analysis of variants on chromosome 4q25 associated with atrial fibrillation. Eur Heart J. 2009;30:813–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Lubitz SA, Sinner MF, Lunetta KL, Makino S, Pfeufer A, et al. Independent susceptibility markers for atrial fibrillation on chromosome 4q25. Circulation. 2010;122:976–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gretarsdottir S, Thorleifsson G, Manolescu A, Styrkarsdottir U, Helgadottir A, Gschwendtner A, Kostulas K, Kuhlenbaumer G, Bevan S, Jonsdottir T, Bjarnason H, Saemundsdottir J, Palsson S, Arnar DO, Holm H, Thorgeirsson G, Valdimarsson EM, Sveinbjornsdottir S, Gieger C, Berger K, Wichmann HE, Hillert J, Markus H, Gulcher JR, Ringelstein EB, Kong A, Dichgans M, Gudbjartsson DF, Thorsteinsdottir U, Stefansson K. Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. Ann Neurol. 2008;64:402–9.

    Article  PubMed  Google Scholar 

  86. Lemmens R, Buysschaert I, Geelen V, Fernandez-Cadenas I, et al. The association of the 4q25 susceptibility variant for atrial fibrillation with stroke is limited to stroke of cardioembolic etiology. Stroke. 2010;41:1850–7.

    Article  PubMed  Google Scholar 

  87. Damani SB, Topol EJ. Molecular genetics of atrial fibrillation. Genome Med. 2009;1:54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Go AS, Hylek EM, Phillips KA, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) study. JAMA. 2001;285:2370–5.

    Article  CAS  PubMed  Google Scholar 

  89. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke. 1991;22:983–8.

    Article  CAS  PubMed  Google Scholar 

  90. Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med. 2007;146:857–67.

    Google Scholar 

  91. Strickberger SA, Conti J, Daoud EG, Havranek E, Mehra MR, Piña IL, Young J, Council on Clinical Cardiology Subcommittee on Electrocardiography and Arrhythmias and the Quality of Care and Outcomes Research Interdisciplinary Working Group, Heart Rhythm Society. Patient selection for cardiac resynchronization therapy: from the Council on Clinical Cardiology Subcommittee on Electrocardiography and Arrhythmias and the Quality of Care and Outcomes Research Interdisciplinary Working Group, in collaboration with the Heart Rhythm Society. Circulation. 2005;111:2146–50.

    Article  PubMed  Google Scholar 

  92. Seet RC, Friedman PA, Rabinstein AA. Prolonged rhythm monitoring for the detection of occult paroxysmal atrial fibrillation in ischemic stroke of unknown cause. Circulation. 2011;124:477–86.

    Article  PubMed  Google Scholar 

  93. Ogilvie IM, Welner SA, Cowell W, Lip GY. Characterization of the proportion of untreated and antiplatelet therapy treated patients with atrial fibrillation. Am J Cardiol. 2011;108:151–61.

    Article  PubMed  Google Scholar 

  94. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361:1139–51.

    Article  CAS  PubMed  Google Scholar 

  95. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365:981–92.

    Article  CAS  PubMed  Google Scholar 

  96. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365:883–91.

    Article  CAS  PubMed  Google Scholar 

  97. Kamel H, Hegde M, Johnson DR, Gage BF, Johnston SC. Cost-effectiveness of outpatient cardiac monitoring to detect atrial fibrillation after ischemic stroke. Stroke. 2010;41:1514–20.

    Article  PubMed  Google Scholar 

  98. Husser D, Adams V, Piorkowski C, Hindricks G, Bollmann A. Chromosome 4q25 variants and atrial fibrillation recurrence after catheter ablation. J Am Coll Cardiol. 2010;55:747–53.

    Article  CAS  PubMed  Google Scholar 

  99. Harris SL, Lubitz SA. Clinical and genetic evaluation after sudden cardiac arrest. J Cardiovasc Electrophysiol. 2020. https://doi.org/10.1111/jce.14333.

  100. Arrhythmia Panel. GeneDx. Retrieved from: https://www.genedx.com/test-catalog/available-tests/arrhythmia-panel/.

  101. Hall CL, Sutanto H, Dalageorgou C, et al. Frequency of genetic variants associated with arrhythmogenic right ventricular cardiomyopathy in the genome aggregation database. Eur J Hum Genet. 2018;26:1312–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. McNally E, MacLeod H, Dellefave-Castillo L. Arrhythmogenic right ventricular cardiomyopathy. 2005 [Updated 2017 May 25]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 1993–2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1131/.

  103. Nava A, Bauce B, Basso C, Muriago M, et al. Clinical profile and long-term follow-up of 37 families with arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2000;36:2226–33.

    Article  CAS  PubMed  Google Scholar 

  104. Fowler SJ, Priori SG. Clinical spectrum of patients with a Brugada ECG. Curr Opin Cardiol. 2009;24:74–81.

    Article  PubMed  Google Scholar 

  105. Hedley PL, Jørgensen P, Schlamowitz S, et al. The genetic basis of Brugada syndrome: a mutation update. Hum Mutat. 2009;30:1256–66.

    Article  CAS  PubMed  Google Scholar 

  106. Brugada R, Campuzano O, Sarquella-Brugada G, et al. Brugada syndrome. 2005 [Updated 2016]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 1993–2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1517/6. De et al. Pacing And clinical electrophysiology: pace. 2008;31(7):916–9. (PMID: 18684293).

  107. Napolitano C, Priori SG, Bloise R. Catecholaminergic polymorphic ventricular tachycardia. 2004 [Updated 2016 Oct 13]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet].Seattle (WA): University of Washington, Seattle; 1993–2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1289/8. Priori et al. Circulation. 2002;106(1):69–74. (PMID: 12093772).

  108. Priori SG, et al. Annals of the New York Academy of Sciences. 2004;1015:96–110 (PMID: 15201152). 11.Alders M, Bikker H, Christiaans I. Long QT Syndrome. 2003 [Updated 2018 Feb 8]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1129/12.

  109. Neira V, Enriquez A, Simpson C, Baranchuk A. Update on long QT syndrome. J Cardiovasc Electrophysiol. 2019;30:3068–78.

    Article  PubMed  Google Scholar 

  110. Wallace E, Howard L, Liu M, O’Brien T, Ward D, Shen S, Prendiville T. Long QT syndrome: genetics and future perspective. Pediatr Cardiol. 2019;40:1419–30.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Abu-Zeitone A, Peterson DR, Polonsky B, McNitt S, Moss AJ. Efficacy of different beta-blockers in the treatment of long QT syndrome. J Am Coll Cardiol. 2014;64:1352–8.

    Article  CAS  PubMed  Google Scholar 

  112. Campuzano O, Fernandez-Falgueras A, Lemus X, et al. Short QT syndrome: a comprehensive genetic interpretation and clinical translation of rare variants. J Clin Med. 2019;8:E1035. https://doi.org/10.3390/jcm8071035.

    Article  CAS  PubMed  Google Scholar 

  113. US National Library of Medicine. Genetics home reference. Short QT syndrome. Retrieved from: https://ghr.nlm.nih.gov/condition/short-qt-syndrome#statistics.

  114. El-Battrawy I, Besler J, Li X, Lan H, Zhao Z, Liebe V, Schimpf R, Lang S, Wolpert C, Zhou X, Akin I, Borggrefe M. Impact of antiarrhythmic drugs on the outcome of short QT syndrome. Front Pharmacol. 2019;10:771. https://doi.org/10.3389/fphar.2019.00771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mazzanti A, Maragna R, Vacanti G, Kostopoulou A, Marino M, Monteforte N, Bloise R, Underwood K, Tibollo V, Pagan E, Napolitano C, Bellazzi R, Bagnardi V, Priori SG. Hydroquinidine prevents life-threatening arrhythmic events in patients with short QT syndrome. J Am Coll Cardiol. 2017;70:3010–5.

    Article  CAS  PubMed  Google Scholar 

  116. Arbustini E, Narula N, Dec GW, Reddy KS, Greenberg B, Kushwaha S, et al. The MOGE(S) classification for a phenotype-genotype nomenclature of cardiomyopathy: endorsed by the World Heart Federation. J Am Coll Cardiol. 2013;62:2046–72.

    Article  PubMed  Google Scholar 

  117. Cirino AL, Harris S, Lakdawala NK, Michels M, Olivotto I, Day SM, et al. Role of genetic testing in inherited cardiovascular disease: a review. JAMA Cardiol. 2017;2:1153–60.

    Article  PubMed  Google Scholar 

  118. Giudicessi JR, Kullo IJ, Ackerman MJ. Precision cardiovascular medicine: state of genetic testing. Mayo Clin Proc. 2017;92:642–62.8. Ackerman MJ, Priori SG, Willems S, Berul C, Brugada R, Calkins H, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm 2011;8:1308–39.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Lee HH, Ching CK. Practical aspects in genetic testing for cardiomyopathies and channelopathies. Clin Biochem Rev. 2019;40:187–200.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Ackerman MJ, Priori SG, Willems S, Berul C, Brugada R, Calkins H, Camm AJ, Ellinor PT, Gollob M, Hamilton R, Hershberger RE, Judge DP, Le Marec H, WJ MK, Schulze-Bahr E, Semsarian C, Towbin JA, Watkins H, Wilde A, Wolpert C, Zipes DP. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 2011;8:1308–39.

    Article  PubMed  Google Scholar 

  121. Kimura A. Molecular genetics and pathogenesis of cardiomyopathy. J Hum Genet. 2016;61(1):41–50.

    Article  CAS  PubMed  Google Scholar 

  122. Bennett CE, Freudenberger R. The current approach to diagnosis and management of left ventricular noncompaction cardiomyopathy: review of the literature. Cardiol Res Pract. 2016;2016:5172308. https://doi.org/10.1155/2016/5172308.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Poloni G, De Bortoli M, Calore M, Rampazzo A, Lorenzon A. Arrhythmogenic right-ventricular cardiomyopathy: molecular genetics into clinical practice in the era of next generation sequencing. J Cardiovasc Med (Hagerstown). 2016;17:399–407.

    Article  CAS  Google Scholar 

  124. Corrado D, Link MS, Calkins H. Arrhythmogenic right ventricular cardiomyopathy. N Engl J Med. 2017;376:61–72.

    Article  CAS  PubMed  Google Scholar 

  125. Chen PC, Yin J, Yu HW, Yuan T, Fernandez M, Yung CK, Trinh QM, Peltekova VD, Reid JG, Tworog-Dube E, Morgan MB, Muzny DM, Stein L, McPherson JD, Roberts AE, Gibbs RA, Neel BG, Kucherlapati R. Next-generation sequencing identifies rare variants associated with Noonan syndrome. Proc Natl Acad Sci U S A. 2014;111:11473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Heller DA, de Faire U, Pedersen NL, et al. Genetic and environmental influences on serum lipid levels in twins. N Engl J Med. 1993;328(16):1150–6.

    Article  CAS  PubMed  Google Scholar 

  127. Genest JJ, Martin-Munley SS, McNamara JR, et al. Familial lipoprotein disorders in patients with premature CAD. Circulation. 1992;85:2025–33.

    Article  PubMed  Google Scholar 

  128. Kathiresan S, Willer CJ, Peloso G, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet. 2009;41:56–65.

    Article  CAS  PubMed  Google Scholar 

  129. Abul-Husn NS, Manickam K, Jones LK, et al. Genetic identification of familial hypercholesterolemia within a single U.S. health care system. Science. 2016;354:aaf7000.

    Article  PubMed  CAS  Google Scholar 

  130. Khera AV, Won HH, Peloso GM, et al. Diagnostic yield and clinical utility of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia. J Am Coll Cardiol. 2016;67:2578–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nordestgaard BG, Chapman MJ, Humphries SE, European Atherosclerosis Society Consensus Panel, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013;34:3478–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sturm AC, Knowles JW, Gidding SS, et al. Clinical genetic testing for familial hypercholesterolemia: JACC scientific expert panel. JACC. 2018;72:662–80.

    Article  PubMed  Google Scholar 

  133. Utermann G. Apolipoprotein E polmorphism in health and disease. Am Heart J. 1987;113:433–40.

    Article  CAS  PubMed  Google Scholar 

  134. Gregg RE, Zech LA, Schaefer EJ, Brewer HB. Type III hyperlipoproteineima: defective metabolism of an abnormal apolipoprotein E. Science. 1981;211:584–6.

    Article  CAS  PubMed  Google Scholar 

  135. Gregg RE, Zech LA, Schaefer EJ, Stark D, Wilson D, Brewer HB Jr. Abnormal in vivo metabolism of apolipoprotein E4 in humans. J Clin Invest. 1986;78:815–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lopez-Miranda J, Ordovas JM, Mata P, Lichtenstein AH, Clevidence B, Judd JT, Schaefer EJ. Effect of apolipoprotein E phenotype on diet-induced lowering of plasma low density lipoprotein cholesterol. J Lipid Res. 1994;35:1965–75.

    CAS  PubMed  Google Scholar 

  137. Iacocca MA, Hegele RA. Recent advances in genetic testing for familial hypercholesterolemia. Expert Rev Mol Diagn. 2017;17:641–51.

    Article  CAS  PubMed  Google Scholar 

  138. Taylor A, Wang D, Patel K, et al. Mutation detection rate and spectrum in familial hypercholesterolaemia patients in the UK pilot CASCADE project. Clin Genet. 2010;77:572–80.

    Article  CAS  PubMed  Google Scholar 

  139. Humphries SE, Whittall RA, Hubbart CS, et al. Genetic causes of familial hypercholesterolaemia in patients in the UK: relation to plasma lipid levels and coronary heart disease risk. J Med Genet. 2006;43:943–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Myant NB, Forbes SA, Day IN, Gallagher J. Estimation of the age of the ancestral arginine3500–> glutamine mutation in human apoB-100. Genomics. 1997;45:78–87.

    Article  CAS  PubMed  Google Scholar 

  141. Andersen LH, Miserez AR, Ahmad Z, Andersen RL. Familial defective apolipoprotein B-100: a review. J Clin Lipidol. 2016;10:1297–302.

    Article  PubMed  Google Scholar 

  142. Hopkins PN, Defesche J, Fouchier SW, et al. Characterization of autosomal dominant hypercholesterolemia caused by PCSK9 gain of function mutations and its specific treatment with alirocumab, a PCSK9 monoclonal antibody. Circ Cardiovasc Genet. 2015;8:823–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Seidah NG, Awan Z, Chrétien M, Mbikay M. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114:1022–36.

    Article  CAS  PubMed  Google Scholar 

  144. Blom DJ, Hala T, Bolognese M, et al. A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med. 2014;370:1809–19.

    Article  CAS  PubMed  Google Scholar 

  145. Marston NA, Kamanu FK, Nordio F, Gurmu Y, Roselli C, Sever PS, Pedersen TR, Keech AC, Wang H, Lira Pineda A, Giugliano RP, Lubitz SA, Ellinor PT, Sabatine MS, Ruff CT. Predicting benefit from evolocumab therapy in patients with atherosclerotic disease using a genetic risk score: results from the FOURIER trial. Circulation. 2020;141(8):616–23.

    Article  PubMed  Google Scholar 

  146. Escolà-Gil JC, Quesada H, Julve J, Martín-Campos JM, Cedó L, Blanco-Vaca F. Sitosterolemia: diagnosis, investigation, and management. Curr Atheroscler Rep. 2014;16:424.

    Article  PubMed  Google Scholar 

  147. Tada H, Nohara A, Inazu A, Sakuma N, Mabuchi H, Kawashiri MA. Sitosterolemia, hypercholesterolemia, and coronary artery disease. J Atheroscler Thromb. 2018;25:783–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang J, Dron JS, Ban MR, et al. Polygenic versus monogenic causes of hypercholesterolemia ascertained clinically. Arterioscler Thromb Vasc Biol. 2016;36:2439–45.

    Article  CAS  PubMed  Google Scholar 

  149. Dron JS, Wang J, Low-Kam C, et al. Polygenic determinants in extremes of high-density lipoprotein cholesterol. J Lipid Res. 2017;58:2162–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Khera AV, Chaffin M, Aragam KG, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50:1219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Talmud PJ, Shah S, Whittall R, et al. Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case-control study. Lancet. 2013;381:1293–301.

    Article  CAS  PubMed  Google Scholar 

  152. Björnsson E, Thorleifsson G, Helgadóttir A, et al. Association of genetically predicted lipid levels with the extent of coronary atherosclerosis in Icelandic adults. JAMA Cardiol. 2020;5:13–20.

    Article  PubMed  Google Scholar 

  153. Berberich AJ, Hegele RA. The role of genetic testing in dyslipidaemia. Pathology. 2019;51:184–92.

    Article  CAS  PubMed  Google Scholar 

  154. Tang W, Apostol G, Schreiner PJ, Jacobs DR Jr, Boerwinkle E, Fornage M. Associations of lipoprotein lipase gene polymorphisms with longitudinal plasma lipid trends in young adults: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Circ Cardiovasc Genet. 2010;3:179–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dron JS, Hegele RA. The evolution of genetic-based risk scores for lipids and cardiovascular disease. Curr Opin Lipidol. 2019;30:71–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Robert Superko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Superko, H.R. (2021). The Role of Genetics in Preventive Cardiology: Utility of Clinically Available Genetic Tests. In: Wong, N.D., Amsterdam, E.A., Toth, P.P. (eds) ASPC Manual of Preventive Cardiology. Contemporary Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-56279-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56279-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56278-6

  • Online ISBN: 978-3-030-56279-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics